Much of the available genetics for commodity crops today are bred to perform well on imbalanced soil and are unlikely to perform as well on biologically healthy soils as varieties bred for those environments.
Here is a quote from Arden Andersen, Science in Agriculture –
Now, a poor seed will not produce good seed on poor soil, but it will produce the quantity of poor seed it was bred to produce. A poor seed on good soil results in impedance to the flow of energy back into the soil. A good seed on a poor soil causes impedance to the flow out of the soil into the plant. Therefore, seed matching is very important. The analogy can be made to two people talking to each other on their CB radios. If both CB’s are tuned to the same frequency, communication is successful. If one or the other is out of tune and can either transmit or receive but cannot do both, communication is unsuccessful. I have experienced seed matching on many acres, and without exception, those farmers employing anhydrous ammonia, potassium chloride, must use certain hybrids to obtain the desired volume of yield. The feed value is very poor, but that is of little concern to these farmers because they are selling the crop. Farmers who have well-balanced soils on biological mineralization programs will fail using the same hybrids. They must use seed grown on similar programs in order to achieve maximum efficiency.1
Back to John ~
My personal experience with alfalfa has been that the varieties bred and optimized for biological systems exceed the performance of varieties bred in the standard system across al soil types and management systems. However, mainstream alfalfa fertilization practices may not be quite as systemically damaging as annual commodity crop production.
I believe there is a lot of eagerness and desire in the market for more vigorous varieties, bred for biological systems, in many crops.
1. Andersen, A. B. Science in agriculture: Advanced methods for sustainable farming. (Acres USA, 2000). Page 83