fbpx

Lambsquarter dis-ease

Farming is a lot of fun when bacteria, fungi,  and insects become our partners in managing and improving the plant populations in our fields.

Our responsibility as farm managers is to guide and develop ecology.

We can guide ecosystems in such a way that all these organisms are beneficial and improve the quality and yield of our crops.

Or, we can guide ecosystems in a manner that bacteria, fungi, and insects become ‘pathogens’, they become the antagonist that we are constantly battling against.

Would you rather have these organisms as your partners or as your enemies?

When you chose to position yourself against them, and have them be your enemy, remember that Nature always bats last. You may win in the short term, but will most definitely lose in the long term.

And it is a choice you make. Not a choice that is forced on you.

2020-08-04T10:44:04-05:00August 5th, 2020|Tags: |

Rejuvenate speeding the digestion of corn residue

Rejuvenate was originally developed to speed up residue digestion. Once it was discovered how rapidly the product stimulated soil biology and released nutrients from the soil, growers began using it in-season with some very good crop responses.

The intent was to develop a microbial stimulant that would lead to rapid residue breakdown without added purchased nitrogen. When purchased nitrogen is added, much of the carbon in the crop residue is lost to the atmosphere as CO2. While we do want to cycle large volumes of carbon and have CO2 release to the atmosphere, we only want this to occur when green photosynthesizing plants are present that are capable of capturing it once more.

When Rejuvenate is added, crop residue breaks down very quickly and is captured as organic matter in the soil, and can be released during the following peak photosynthesis period.

This is a set of comparison photos of corn residue treated and untreated with Rejuvenate five days after application. In the treated section, the center pith of the stalks has already turned black, while the untreated side is still white.

2020-08-03T05:47:41-05:00August 3rd, 2020|Tags: , |

Healthy mosquitos don’t vector malaria

When we think about epigenetics and the phrase “environment determines genetic expression”, we should think about what this means not just for the plants and species we are trying to optimize, but also for all the plants, fungus, bacteria, nematodes, and mites commonly called ‘pests’. If environment determines their genetic expression, that means we can manage their virulence or pathogenicity to the degree we can manage the environmental factors they depend on.

Tom Dykstra shares an interesting perspective on healthy vs unhealthy mosquitos, and their capacity to resist infection from malaria or other ‘pathogens’.

John: You and I have discussed before how environment determines genetic expression. And you expressed that you have had difficulties infecting some mosquitoes with malaria. As we’ve been having this conversation about mosquitoes, that popped back into my mind. What are the differences between healthy and unhealthy mosquitoes as vectors of infectious disease?

Tom: Well, I personally have not infected mosquitoes with malaria, but I’ve talked to researchers who’ve worked on this. Let me put it this way. Most Anopheles mosquitoes do not transmit malaria. Most Aedes mosquitoes do not transmit dengue, yellow fever, or Zika. Most Culex mosquitoes do not transmit encephalitis.

When you observe this, you understand that not all insects are infected with the disease. So you can get bitten by thousands and thousands of Anopheles mosquitoes and not get malaria. But all you have to do is be bitten by one mosquito that does have malaria in order for you to get it.

And this is one of the truths of biology that has been revealed to us—that insects also have various states of health and lack of health. In order for them to be relatively healthy, they need digested components. Their food sources need to be as such. But if their food source is not that good, or if it’s missing something, they can suffer. Insects have died in the field. I’ve seen it many times. Sometimes people try to keep them as pets and they die. We see them dying in the field all the time. They are susceptible to disease. They also have states of health and lack of health that are somewhat analogous to what you would find in a human.

If you’re working with mosquitoes in the laboratory, and you try and infect them with the particular disease that they’re supposed to be infected with—Anopheles mosquitoes with malaria, for example—you will not get a 100 percent infection rate. And that is amazing. This is in part because when you’re raising them in the laboratory, they’re coddled. They’re given everything they need. Therefore, they’re in pretty good shape, and it becomes a little difficult to infect them. Out in the field, they might be more susceptible. Ones that are more susceptible might die. Others would be more susceptible to actually getting a disease—like the malaria protozoan or the Zika virus or anything of that sort. And it can actually take hold of the system, because the insect doesn’t have the immune system to take care of it. It kind of sets up shop inside the insect. 

2020-07-27T19:35:50-05:00July 28th, 2020|Tags: , |

Forage legumes for disease suppressive soils

How often do you see rhizobium nodules the size of golf balls? I have only observed them on sun hemp.

The nitrogen fixation process of rhizobium bacteria in legume nodules has a reducing effect and shifts the soil microbial community in the direction of disease suppression. Forage legumes should be a part of our crop rotations and ecosystems for more reasons than just supplying nitrogen. Because of their reducing effect, they also increase manganese and iron availability from the soil reserves which are present in the oxidized form that plants don’t utilize.

2020-07-27T06:55:28-05:00July 27th, 2020|Tags: , , , , |

High energy alfalfa with solid stems

Alfalfa from two different sections, one treated with a foliar spray designed to increase photosynthesis, and one untreated, show dramatically different leaf and stem structures.

The foliar application included calcium, magnesium, sulfur, iron, manganese, and boron.

As you can see in the photos, the treated alfalfa has a larger diameter stem, and the stem is also filled solid with pectins.

The treated alfalfa also has larger leaves with a higher width to length ratio and a higher leaf to stem ratio.

All of these factors contribute to improved forage digestibility and increased energy content.

2020-07-23T22:06:30-05:00July 24th, 2020|Tags: |

Soil glyphosate limiting manganese availability

We have observed many soils that do not deliver manganese well in spite of having large manganese reserves in the soil profile. In most cases, this is a result of manganese oxidation. Manganese oxidation can result from chemistry interactions, but a great deal of manganese oxidation occurs as a result of fusarium overgrowth from accumulated glyphosate applications.

Here are some thoughts Robert Kremer shared in our conversation on our podcast interview:

John: Coming back to the conversation about glyphosate and AMPA, how does glyphosate—and the accumulation of glyphosate and AMPA over extended periods—impact overall soil health?

Robert: We know that there are some indirect effects of continuous use of glyphosate on soil health, because we usually measure a lot of the biological parameters when we set up soil assessments. We see that there are some effects on some of the beneficial bacteria that are involved in plant growth promotion, such as producing plant growth regulators that stimulate root growth and other beneficial bacteria that will produce pathogen-suppressive compounds. We’re noticing that glyphosate tends to suppress those beneficial groups of bacteria, so that has an effect on subsequent plant growth as well. So we feel that there’s a problem there.

I briefly mentioned the effect on some of these microorganisms that are known to cause certain micronutrients to be immobilized, and therefore not available for plant uptake. One of these is manganese. And manganese, of course, is very important for the activity of many enzymes that are involved in many of our metabolic pathways. If it’s tied up, you may have poor photosynthesis. You may have poor amino acid formation because you don’t have enough of it to satisfy the needs of the enzyme.

We’ve found, for example, that fusarium that will colonize the roots of plants that are treated with glyphosate. Fusarium is a manganese oxidizer, so it will immobilize manganese. If it’s on the root system, manganese is not going to be taken up. And if it’s built up in the soil—whether there’s a genetically modified crop there or not—it’s going to remain in the soil. It’s going to continue to immobilize manganese. If you don’t have a lot of available manganese, that’s going to affect the overall soil health as well.

There are a lot of other things. Glyphosate may exchange with phosphorus in the soil, and then you have problems with either excess phosphorus, or, if phosphorus isn’t being taken up by the plants, it can become an environmental problem. We discussed the quality of the organic matter, because we basically just use two crops as the source of the organic residues being returned to the soil. If we don’t have the microbes there to decompose them, or if there’s not a diverse enough quantity of organic substances to help build up soil organic matter, then that will affect soil health as well, because—like I mentioned before—organic matter is one of the key indicators for good soil health.

2020-07-20T22:09:29-05:00July 21st, 2020|Tags: , , , |

Raspberry leaf differences

These two photos of raspberry come from the same variety, planted the same time, about 20 miles apart in similar soils, but with completely different nutrition management.

It is interesting to observe how plants express themselves differently in different environments. When we learn what to look for, it is possible to identify some of the subtle indicators of plant health and yield potential.

When you compare these two photos, note the differences in the definition of the leaf edges, how the leaf shoulder is shaped where it is attached to the petiole, leaf flatness, and length to width ratio.

It is worth noting that the nitrogen content in these leaves is practically identical, yet one has much higher chlorophyll concentrations.

What else can you observe that I missed pointing out?

2020-07-20T08:07:00-05:00July 20th, 2020|Tags: , |

Yield potential of cucumbers

Good cucumbers crops will have a single female blossom on every node when water and nutrients are well-managed. Average cucumber crops will have some of the nodes occupied with male blossoms or aborted female blossoms. You can identify the prior period when water or nutrients were inadequate by observing which nodes don’t have a female blossom and fruit.

Exceptional crops with ideal water and nutrient management can produce several female blossoms per node, and fill all the fruit to harvest size.

How much higher yields do you suppose could be harvested from an exceptional crop compared to an average crop?

P.S. I had an interesting conversation with Aharon Henderson on the EcoIQ podcast that released recently. You can find the episode here.

2020-07-16T21:06:09-05:00July 17th, 2020|Tags: , |

Reversing bacterial canker on cherries

Bacterial canker is considered an untreatable infection in stone fruit and cherries.  When the infections become severe enough, the block of trees may be pushed out and replanted for a fresh start.

Our experience indicates it is possible to reverse bacterial canker infections. We can’t point to a specific nutritional profile or disease suppressive soil microbial populations as having produced the resistance. We used soil mineral analysis and plant sap analysis and fine-tuned soil amendments, fertilizers, and foliar applications based on the results. Bacterial canker disappeared from trees that had previously been infected to the point of being destined to be pushed out the following year. Today, these trees are a productive block five years after the initial applications were made.

Lynn Long and I discussed this specific cherry block in our conversation on the podcast here.

John: We’ve worked together on some orchards where we’ve seen some interesting things concerning bacterial canker. At one farm that we at Advancing Eco Agriculture have worked on, the incidence of bacterial canker has been greatly reduced―I think to the point where now, after several years, we can say that it seems to have been eliminated on a couple of blocks. Many growers have asked what we did and what products we used.

And the answer, as Lynn has pointed out so well, is that we don’t know. We worked with nutrition products, we worked with biological products, and we tried to manage that ecosystem. As the ecosystem changed, bacterial canker pressure changed. We can’t point to one thing and say that we did one thing that made a difference. I agree with you that there seems to be the potential to shift that disease in particular, and perhaps others as well. This would be really exceptional.

Lynn: Bacterial canker is a disease that is pretty relentless once it gets into the tree. Occasionally, you’ll find that the canker will dry up and will not progress any further, but much more typically, once it’s established, it will continue to grow and expand and will eventually kill part of the tree, or all of it.

When this grower approached me, he mentioned that he was having some severe infection with bacterial canker. There’s really no effective chemical that you can apply on that tree that is going to stop an infection once it’s started. You can help prevent infections by using some products. One particular product would be copper, but even that’s not all that effective.

When I saw this orchard, there were infection strikes all over the trees. It really did not bode well for the future of that block. But then the grower started to do some of the things we’ve been talking about―using compost and mulching and using some of the AEA products. As I’ve mentioned before, we can’t point a finger to any scientific data that says this turned it around. All we have are observations.

After the first year, the grower came back to me and said that those cankers had dried up. This was in the summertime, and these cankers do go dormant in the summertime. I thought, “Let’s see what they look like in the fall and then in the spring, and we’ll make a better assessment then.” The next spring came around, and the next summer, and the cankers had stopped. For two or three years I went back to that block and continued to look at it, and I saw no more advance of that disease. The oozing that comes about as a result of that disease―from the sap coming out of the tree―had totally stopped. The infections had dried up. It was pretty remarkable. It was quite atypical of what we would have expected for a commercial cherry orchard that was so badly infected. 

P.S. Several weeks ago I wrote about our observations preventing and managing spider mites predations with nutrition, which we have been quite successful with. Today at 4 PM EDT AEA is hosting a webinar where we will describe the plant nutritional profile that allows spider mites to be present, and how you can shift away from this profile. If spider mites are a challenge for your crops, you won’t want to miss it. You can sign up here.

2020-07-15T21:46:34-05:00July 16th, 2020|Tags: , , , |

The impact of soil carbon to nitrogen ratios on disease suppression

A foundational goal of regenerative agriculture management practices is to increase the volume of carbon that is cycled through soil systems. Not just statically stored in soils, but cycled through. The more volume of carbon that is cycled, the more robust the soil microbial community becomes, the more efficient plant photosynthesis becomes, and the better the entire ecosystem functions.

When more carbon is cycled in different forms, microbial balance and activity shifts to match, which results in changing the quantity of nitrogen that is sequestered, and the quantity of phosphorus, sulfur, silicon, and trace minerals that are released from the soil mineral matrix.

When abundant carbon is cycled, soil biology has the food sources required to fix all the nitrogen they require from the atmosphere, and no additional N needs to be added. This also results in a change of the dominant direction of N mineralization to be primarily nitrate or ammonium, which influences disease suppression and crop nitrogen sufficiency.

Here are some important thoughts on this topic Don Huber shared:

John: What is the impact of carbon-to-nitrogen ratios on both disease-suppressive soils and also on yield?

Don: The carbon-to-nitrogen ratio depends on the carbon source.

That got me in trouble with my first publication in plant pathology. I challenged the carbon-nitrogen ratio hypothesis. People were saying, “If you have a 12:1 versus a 40:1 ratio, you’ll always have a disease relationship.” And I demonstrated that it’s not the carbon-to-nitrogen ratio. It’s the form of nitrogen that is involved in that ratio.

You can take different crop residues or a different cropping sequence, and it’s the effect of that sequence on the form of nitrogen that determines what the disease reaction is. And, of course, the effect of that form of nitrogen quite often is an effect on manganese or zinc or copper or other nutrients, along with the form of nitrogen.

Carbon-nitrogen ratios work if you’re working with the same nutrient source or crop residue and then varying the nitrogen ratios by either harvesting plants when they’re greener or harvesting plants drier—when you have wider carbon-nitrogen ratios. But the carbon-nitrogen ratio per se isn’t the factor that’s involved there. It’s the effect of that ratio on the form of nitrogen and the other minerals that are involved—such as manganese or zinc or iron or copper—that are critical for particular physiological processes.

P.S. I had an interesting discussion with Koen van Seijen on the Investing in Regenerative Agriculture podcast that just released. Much of our discussion revolved around the question, “How would I invest a billion dollars in accelerating the adoption of regenerative ag?” You can find it here.

Go to Top