fbpx

Bent growing tips as indicator of calcium deficiency

The tips of growing vines should be vertical and point almost straight upward, particularly in the morning. During the day, in high-temperature conditions, they might move to a slight angle, but should still be mostly upright.

When a growing tip is bent over sideways, as this one is, it is an indicator of a calcium deficiency. It can also be an expression of dry soils and not enough water. Since the plant needs to absorb calcium from the roots each 24-hour photoperiod, which is then transferred through the xylem directly to the new growth, saying that a bent tip is the result of not enough water is just a different way of saying that it doesn’t have enough calcium.

Observing the growing tips on cucumber vines is an easy assessment that can indicate whether the plant has enough energy to fill multiple fruit on each node and continue setting new fruit.

2020-06-23T11:44:07-05:00June 29th, 2020|Tags: , , |

Treating corn rootworm with nutrition

In Spring 2013 an organic grain crop grower in central Pennsylvania called, very concerned about corn rootworm in his organic corn crop. About 15%-18% of the seedlings  were noticeably delayed behind the other plants, and the rootworm larvae were spreading to the larger plants as well.

At this point, we had less experience managing insects with nutritional applications than we do today, and I was uncertain how much of a difference a nutritional application would make.

With the caveat that I don’t have experience with this situation, and I am unsure if the recommendation will work, I suggested a foliar application of AEA products that contained magnesium, sulfur, boron, cobalt, molybdenum, seaweed, humic substances, crab shell,  shrimp shell, and some other goodies.

The intent of the foliar was to rapidly convert all the existing free amino acids, nitrates, and ammonium which might be present in the plant sap into peptides and complete proteins. An additional goal was to trigger an immune response within the plant through the induced systemic resistance (ISR) pathway so the plant produces higher levels of phytoalexins which can disrupt the digestive system of the insects and shut them down.

The grower applied double our recommended rates. (You don’t know any farmers that have ever done that, right??)

Forty eight hours after the application, scouting showed that all the rootworm larvae were dead.

The crop went on to produce a full yield of 230+ bushels.

Since then, we have experienced similar success on many different types of insects in different crops. It is possible to not only prevent insect damage, but healthy plants will actually kill insects that persist feeding on them.

What I find particularly interesting in this example is that the insect was below ground, and could not have been directly exposed to the foliar application. This is a certain indicator that the plants nutritional profile was changed as a result of the foliar application, which produced the resistance response we were looking for.

  

2020-06-23T11:23:38-05:00June 26th, 2020|Tags: , , |

Electrical conductivity comes from biology in healthy soil

The agronomy of the future will be based on measuring and managing the biophysics of soil and organisms rather than focusing on chemistry and genetics. Important parameters to manage will include soil electrical conductivity, paramagnetism, redox, and pH, from a perspective of managing electron and proton flow through the ecosystem.

To grow crops that are high yielding and healthy, soils need a minimum electrical conductivity of 200 uS at germination, gradually increasing to 600-800 uS during the fruit fill period. Plants don’t grow from nutrients. They grow from the energy that is provided by those nutrients. Mainstream agriculture provides the electrical conductivity in soils by adding ionic ‘salt’ fertilizers that have a high EC, and thus increase soil EC. Of course, these ionic salt fertilizers oxidize the microbial population, age clay, and damage soil aggregates.

In biological soils, the electrical conductivity should not come from ionic nutrients held in the water solution, but from microbial cells. This is much more advantageous to the crop, because EC levels are sustained through the entire growing season, and do not drop off as soon as soil water becomes limited. Soil biology can provide an abundance of electron flow through the soil, and produce much higher yielding and higher quality crops than we consider ‘normal’ today.

Here is an excerpt from the podcast interview with Tom Dykstra where he alludes to this function of soil biology.

Tom Dykstra:

Now, when these microbes are gone, they are no longer able to hold on to the energy that is in their bodies. And so you have now given up a massive energy source. This is where the electromagnetics comes in: if you do not have those microbes, there is no energy in the soil. Each microbe is about half a volt of sequestered energy. This doesn’t mean that there is this massive amount of energy—that if you stepped on some ground with millions of microbes, it would blow your foot off or catapult you into the air fifteen feet. What this means is that this is clean, stored energy that’s found in the membranes. It’s found in the chloroplast, in the endoplasmic reticulum. 

Everything that is inside the cell has a nice, clean storage form of this energy, and that energy is then made available to the plant, either directly or indirectly. Sometimes the plant can use the nutrients if the microbe dies. Microbes are dying all the time, and some of their nutrients can be taken up by the plant, because everything is bioavailable when a microbe dies. Or you can have a more indirect result—when the microbe is actually releasing minerals to the plants. These microbes can break down minerals far more efficiently than plants. Without these microbes, the plant is no longer able to take in minerals. And these minerals are the constituents—the cofactors—that are used to keep photosynthesis going. Without these minerals, photosynthesis suffers, and we see lower Brix.

 

2020-06-23T10:54:02-05:00June 25th, 2020|Tags: , |

Nutritional integrity is needed to increase photosynthesis

We know it is possible to increase the quantity of sugars produced in each 24 hour photoperiod as much as three to four times higher than the baseline of what is considered ‘normal’ or common in most crops today. In addition, it is also possible to increase the ‘quality’ or the complexity of carbohydrates produced in each photoperiod. Plants with limited nutritional integrity produce lower volumes of simple sugars. Healthy plants produce much larger volumes of more complex sugars.

When the plant begins producing larger volumes of more complex sugars, the crop begins behaving differently. There isn’t a good way to describe this. Internode lengths become shorter, while growth is faster. Clusters of fruit or heads of grain have more kernels or fruit, and mature earlier. Very importantly, the crop begins contributing more carbon to the soil than it removes, even when 100% of the above ground biomass is removed.

Here are some thoughts Don Huber shared when I asked him about photosynthesis during our first podcast interview.

John: Don, one of the things I believe is quite important that we haven’t spoken about is the general impact of photosynthesis and the quality of photosynthesis—how photosynthesis can vary in crops and cover crops and how that influences the volume of root exudates. How can a grower increase the quantity of photosynthesis and increase the quantity of root exudates in the soil profile?

Don: You’re not going to have any photosynthesis if you don’t have manganese. Manganese is critical for splitting water; it provides the hydrogen that can then combine with carbon dioxide. You’re not going to have any photosynthesis without magnesium, which is part of the chlorophyll molecule. You’re not going to have a very efficient photosynthesis without iron and sulfur and all the other minerals, because your physiology is all tied together.

If you want to improve the efficiency of photosynthesis, the first place to look is mineral availability—having that system work. So, if you don’t have a backlog of sugar as fructose or glucose, you want that sugar to be stored as sucrose. That changes the osmotic relationship; it changes the overall physiology of the plant. You’re also not going to have any sucrose if you don’t have manganese, because manganese is responsible for your sucrose-phosphate synthase enzyme as a cofactor.

It’s a system that works together. If you don’t have sulfur, you won’t have enzymes, because most of your proteins are initiated with either cysteine or methionine—your sulfur amino acid. C4 plants have a more efficient photosynthetic pathway. They have PEP carboxylase, as well as rubisco enzymes—after the carbon dioxide from the air binds with the hydrogen that is split off of the water by manganese. So, you have C4 plants and C3 plants, and the physiology that’s involved—but all of them require the mineral nutrients. And any one of those deficiencies influences the overall efficiency of the whole process. 

Change nutrition management for spider mite resistance

Plants have the capacity to kill insects and mites feeding on them when they are healthy enough. These potential pests don’t show up in fields at random, but only when the plant has a nutritional profile they can utilize as a food source. When you change the plants nutritional integrity with agronomy management practices, you also change the crops susceptibility to insects and pests of all types.

Spider mites are often associated with hot and dry conditions. Spider mites are not attracted to high temperatures specifically. They are attracted to plants with abundant levels of free ammonium in the plant sap.

Elevated levels of ammonium often occur in high temperature environments when plants shift from photosynthesis dominant to photorespiration dominant. When this shift to high photorespiration occurs, plants are no longer getting enough energy (sugars) from the photosynthesis process (which has slowed down or halted). To sustain themselves, they begin catabolizing proteins to use as an energy source.

The protein catabolism during photorespiration in high temperature environments usually results in the accumulation of ammonium in the leaf, which can result in the crop being susceptible to spider mites, only when the plant does not have the needed nutrients and enzyme cofactors to convert the ammonium back into proteins at night, or as soon as carbohydrate energy become available. The critical nutrients for this conversion process are magnesium, sulfur, boron, molybdenum, adequate carbohydrates in the plant, and occasionally nickel.

In these photos, you can observe the results of a nutritional correction applied through an overhead pivot on a corn crop in SW Kansas in 2015. Spider mites were present in large numbers, and the local crop scout recommended a miticide application immediately.

The pivot took 48 hours to treat the entire circle with nutrients. In the sections that had been treated 24 hours earlier the spider mites were noticeably sluggish and moving slowly. In the section that had been treated 48 hours earlier, the spider mites were completely dead. The local crop scout assumed a miticide had been applied, but this was not the case.

Healthy plants can be completely resistant to all diseases and all insects when supported with the correct nutrition and the correct microbiome.

Of course, applying more ammonium fertilizer than plants can convert to proteins in a few days is also a great attractant for spider mites, thrips, and other related pests that are thought to like ‘warm conditions’.

2020-06-23T07:17:16-05:00June 23rd, 2020|Tags: , , , |

What healthy table grapes look like

It is said that a picture is worth a thousand words, which seems to undervalue this photo. Does it even need any commentary?

These grapes are still 3-4 weeks away from harvest. The berries will continue to size even bigger than they are now. They are crunchy, the stems are green. Notice how there are no diseases and insects present? That is not the case because of pesticide sprays.

I can’t resist adding the mantra, We don’t really know what healthy plants actually look like anymore.

2020-06-18T20:11:06-05:00June 19th, 2020|Tags: , |

My first book, Quality Agriculture is available now!

Great news! I am excited to announce the release of my first book. Quality Agriculture, conversations about regenerative agronomy with innovative scientists and growers is available on Amazon in time for Father’s Day.

Have you ever wished to download the knowledge and experience of the leaders in the regenerative agriculture space? This book will give you many insights you won’t hear about in other places.

My intention for the Regenerative Agriculture Podcast was to bring together the wisdom and knowledge of growers and scientists who had developed deep insights into how agriculture ecosystems function when at their optimum. The wisdom that emerged from these discussions is valuable, useful, and can be applied right away. Many times I wished to write down and remember all the great information my guests have shared. So we did exactly that, and this book came to be.

You may have already been reading bits and pieces of these interviews in some of the blog posts that I have been sharing. There is so much in these interviews, the brief excerpts can’t begin to do them justice. Imagine an entire book packed with this level of experience, knowledge and experience.

You can read all the details about the book, its table of contents, index, some of the memorable quotes, and the excerpts we have posted, as well as links where you can buy the book internationally.

Several friends have been kind enough to share their impressions of the book. Here is what they had to say:

No matter what form of production agriculture you are involved with, Quality Agriculture is a must read. John uses his expertise to delve deep into ago-ecology with many of the industry’s pioneers. — Gabe Brown

Agriculture is at a crossroads, and we are beginning to realize that the current system is not providing the stability in our production system needed to overcome the variations due to soil degradation and weather during the growing season. This book offers valuable insight into a path forward to enhance our soils for generations to come and to provide the quantity and quality of food we need for food security. This book will require you to think about changes needed in our agricultural systems. — Jerry Hatfield

The human mind is a world to itself. This book is a collage of splendid agriculture minds with a common theme: embrace and emulate the power of life. The collective wisdom of this book will help you glean the kernels of truth in a research world built on a wrong premiseasking the wrong questions. If you garden, farm, or just enjoy the ecological world, build the correct foundation in your mind by reading this book. — Ray Archuleta

John Kempf, who has one of the most fertile minds in agriculture today, has done us a huge favor with this book by multiplying his knowledge with like-minded experts he’s interviewed recently. Collectively, this disruptive innovation of how we grow food will be the foundation of how we farm in the future! — Steve Groff

Inspiring and insightful interviews with true leaders in regenerative agriculture — David R. Montgomery

John Kempf’s book on regenerative agriculture is a great collection of the wisdom and experience of twelve different agricultural pioneers from around the country. John directs the discussion, unlocking one door after another on fascinating insights each of these experts have discovered in their work. I have met several of the participants over the years but learned much more from these interviews than from my casual visiting with them and hearing them speak. In every case, what the reader finds is the destructive nature of modern, industrialized agriculture that is focused on artificial inputs and unsustainable outputs. Each interviewee directs our attention back to the complex interrelationships found in the soils, plants, and microbiology of nature. This is a must read for everyone who farms and everyone who eats. — Robert Quinn

If you’re like me, you like to connect with folks that make you think. This book does that. I’ve listened to most of the podcasts, and I enjoy John’s innate ability to connect folks from many different facets of research, bringing them to a combined platform. This book allows you to go deeper, with the resources and data in the background as supporting evidence. I’ve read it from start to finish, and I’m looking forward to future volumes to expand my personal knowledge base. — Loran Steinlage

Knowledge about regenerative farming systems comes in many forms from many farmers, researchers, ag educators, and consultants. The challenge is sorting through all the information, learning what is possible, and putting together a working system for the land that matters. These interviews certainly expand and clarify the knowledge base of professionals who have spent their careers studying regenerative agriculture. A great read―you won’t be disappointed — Gary F Zimmer

You can buy the book on Amazon.  Please leave a review, and share the book with others. 

Thank You! 

2020-06-16T18:16:50-05:00June 17th, 2020|Tags: |

Embracing the connection between agriculture and public health

My first introduction to the concepts and ideas behind regenerative agriculture was from a three day course with Arden Andersen fifteen years ago. Arden spent the first entire day describing the modes of action of various pesticides and how they influence our bodies and hormonal system. We were the pesticide distributors for the local region at the time and the information was eye opening for us. Over the next several years, I studied the modes of action of pesticides, and learned as much as I could about their impact on ecosystems, animals, and people. 

It can be challenging to have a conversation about the impact these compounds are actually having, particularly when we feel we are still dependent on them in some way. It can be hard to hear about the negative impacts they have, and the long term consequences. 

I believe it is much more powerful and useful to be for something than to be against something.  I do not believe that GM crops and pesticides are needed to develop regenerative agriculture ecosystems with much higher production and quality than is mainstream today. I don’t believe it useful to be constantly describing the negative impacts they can have, but to instead focus on the opportunities and untapped potential other practices and products can bring. 

With that being said, I believe it is valuable for us to understand the modes of action of different pesticides, and their individual and collective impact on public health. Farmers can have a tremendous positive impact on public health, because we can grow healthy food that boosts people’s immunity and prevents them from becoming ill. On the other hand, we can also choose to grow food that is laced with toxins with a long list of known and unknown negative impacts. 

In conversations with podcast guests over the last several years, we have made passing comments about some of the known impacts of pesticides and glyphosate on soil and plant health, but have never really discussed the impacts on human health. In this episode with Zach Bush, I chose to talk about the human health impacts of pesticides and glyphosate in particular, since it has become so controversial in recent years. 

This discussion is not a condemnation of those who feel the need to use these toxins, but an effort to bring more clarity and light to the discussion. It is valuable for us to understand, and once we understand, to make responsible decisions when we know the health implications. 

I tremendously enjoyed this discussion because of the heart and empathy Zach brings to any conversation, and I am sure you will to. Please let me know what you think. 

You can listen to the episode and read the show notes here.   

2020-06-16T08:00:42-05:00June 16th, 2020|Tags: , |

How foliars can regenerate soil while increasing yield

In 2013 a farmer in central PA moved to a new farm with some very challenged year old alfalfa stands. He pulled soil samples, and broadcast a soil amendment blend that included compost, rock phophate, gypsum, K-Mag, various trace minerals and some other rock powders on all the alfalfa acres.

On one section he applied a foliar application seven days after the first cutting was removed. A second section received a foliar application after both the first cutting and after the second cutting. A third section received no foliars at all. I visited the farm a few days before they cut the third cutting, you can see the plant differences in the photo.

In the third cutting, the control with no foliar yielded .75 tons per acre, the single foliar produced 1.25 tons, and the double foliar produced 1.5 tons per acre.

The section with two foliars had the largest stems, and stems were completely filled. The no foliar control had the smallest stems, and they were hollow.

This third cutting was dried as dry hay, and not crimped. Which section would you guess dried down the fastest?

I would have guessed the control with the smallest and hollow stems. And I would have been wrong. The largest stem, full stem dried down the fastest, and the stem was dry before the leaves. How does that work?

These plants were so healthy, the leaves continued to respire after the plant had been cut, and sucked all the moisture out of the stem. I have since learned this (obviously) won’t work when the stem is crimped. The thin hollow stemmed alfalfa would have benefited from crimping, but not the healthier full stemmed section.

Which of these sections contributed the most to regenerating soil health? We know the crop with the most biomass above ground has an equivalently larger biomass below ground, and contributes more root exudates to the soil profile.

Also, the section with a much larger biomass absorbed a lot more nutrients from the soil. The quantity of calcium and magnesium and phosphorus moved to the barn would have been much higher in the section with double the biomass. Yet, all the sections received the identical soil amendment broadcast. In the section with the foliar applications, photosynthesis was increased, which resulted in more root exudates, which resulted in more aggressive microbial activity, which released more minerals from the soil reserves and applied amendments, and produced a more nutritious crop.

This example is a perfect illustration of why I believe foliar applications of nutrients are one key practice to accelerate the system. Photosynthesis is the only way we can bring new energy into the system, and properly designed foliar sprays can turbocharge the process within a crop.

Not only did these foliar sprays increase yields, they also regenerated soil health, improved soil biology, and increased profitability.

We can increase the performance of our photosynthetic engine with well designed foliar applications. So why wouldn’t we?

When foliar applications don’t produce these types of responses, it is either because there are other non-nutritional limiting factors that are limiting the photosynthetic engine; not enough carbon dioxide, water, or sunlight; or, the foliar spray was not designed correctly.

What was in these foliars sprays? There is no benefit in knowing the exact combination, because what your crops needs is likely to be quite different from what this crop needed. In principle, we need to make sure we address all the nutrients that are needed for the photosynthesis process. This doesn’t mean you need to add each of these nutrients. It just means you need to make sure your crop has enough of each of them. If they already have enough, why would you add more?

2020-06-11T08:20:02-05:00June 15th, 2020|Tags: , , |

Change ‘pathogens’ to ‘beneficials’ by changing the soil environment.

if the pathogens can’t bring about that compromising of the availability of manganese by converting it to an oxidized form, the fungus is essentially just a good saprophyte in the soil.

Don Huber describes for us once again that ‘disease’ organisms can only produce an infection in the correct environment. In a healthy environment, these same organisms develop symbiotic relationships with the plant. Our task as farm managers is to manage the environment properly, and crop ‘dis-ease’ vanishes.

You can listen to the entire episode here.

Don: A lot of your nutrient relationships—where you have microorganisms that are responsible for changing the valence states of various minerals so that they’re more available or less available. And you have those going on in both directions at the same time in some capacities. It’s an issue with manganese or iron or some of those things. Some of the secondary functions come into play so that all of that can take place and manifest in a very positive manner. Even though what you might be looking at—or the tests that you have—may not show the complete picture, you have to realize that it has to be going on, in order to complete the cycle.

And so, it’s a matter of either developing the techniques or understanding how all of those organisms interact—the ecological niches that make the system work. Everything isn’t just one big pool with somebody stirring the whole thing around. You really have a community of functions that are taking place at the same time, but you don’t have the same gas station at every corner or a grocery store at every corner. You have each one of those different functions taking place in its own little scheme of things. So the overall system is a very functional and very dynamic relationship relative to the plan. And it’s neat.

John: One of the pieces that you and I have discussed in the past is the challenge that we are seeing today with manganese availability. I would say that as much as 80 percent or more—perhaps even 90 percent or more of the crops that we work with today—come back showing inadequate levels of manganese. What are the major factors that contribute to that?

Don: Manganese has a very dynamic relationship with the soil, and also with many of the fungi. There are organisms—mycorrhizae—that increase the uptake of manganese, as well as zinc and phosphorus and some of the other nutrients. So, if they’re not functional, you miss that ability to absorb and to interact with a tremendous volume of the soil—where that mineral might be in short supply.

The other thing is that you have bacteria that are responsible for the valence state. You have the oxidizing groups. You have the reducing groups. The plant can utilize only the reduced form of manganese—the Mn2+ form. Mn4+ form is non-available, but we see it primarily in the soils that have high phosphate levels or high oxidative relationships—the manganese can be there and yet not be available for uptake. We see it with many of our pathogens, because the pathogens utilize manganese oxidation as a virulence factor.

We looked at several thousand isolates of Gaeumannomyces graminis, which causes take-all all over the world. We evaluated those and we found that there was one characteristic that was common in all virulent farms—manganese oxidation. If the wheat had oxidized manganese, it would never resist the disease. The same thing for rice blast. The same thing for isolates of Streptomyces scabies and a number of other pathogens. The ability to oxidize manganese to a non-available form—and to compromise the resistance of the plant to those pathogens—if the pathogens can’t bring about that compromising of the availability of manganese by converting it to an oxidized form, the fungus is essentially just a good saprophyte in the soil.

Same thing with many bacteria. So, we see these direct effects on mineral availability being involved not just in growth and quality and nutrient density, but also in susceptibility or resistance to disease. You have the virulence relationship of the pathogens with bacteria and fungi in the soil, and that’s related to those minerals that are necessary for the plant’s defenses. Those minerals are also directly related to the growth and resistance of the plants to those pathogens in their overall physiological function. It all fits together very nicely if the system is balanced—if it’s favorable.

And that’s one of the things that we can adapt to. When we’re farming, we’re really managing an ecology. It’s not a matter of a silver bullet for this problem or a stinger missile for another. It’s really a matter of having ecology work for us and support the plant. And if we don’t do that and we upset the system, then we compromise the overall quality and productivity potential we have in our soil.

John: You said that there are a number of pathogens that are dependent on manganese oxidation. And if they’re unable to oxidize manganese, they just become saprophytes in the soil profile. Are they dependent on that manganese oxidation directly—do they individually require it? Or are they just producing a manganese-deficient plant that is now susceptible to invasion?

Don: Both of those statements would be correct. They don’t necessarily need the oxidation. Some of them are also reducing organisms. In other words, if you change the environment—or if you change the association that they have with other organisms—then they may be strong reducing versus strong oxidizing organisms.

We see that especially with the Pseudomonads and a number of other organisms—you change the soil environment and they can benefit you, or they can be synergistic, or they can even be a direct pathogen, involved in compromising that resistance. The microorganisms use those minerals just like a plant does, or just like we do. Our metallo-nutrients, or strong transition elements, or electron transfer and physiological processes, are the cofactors for enzyme function. We don’t require very much of them, but if you don’t have that specific cofactor that’s involved for an enzyme, that enzyme isn’t going to do any work for you—it’s just another protein that’s sitting there. And about 80 percent of our proteins in plants are what we call metallo-proteins, where the metallo part is a cofactor. It’s a small part, but a very critical one, as far as function of that physiological pathway.

John: In essence, what you’re describing is that as long as plants have adequate availability of reduced manganese, they have resistance to all the diseases that you described.

Don: It would be very, very critical for that resistance—for the physiological functions in in the plant—without those minerals.

If you have read this far, you are welcome to join us for a webinar June 19th, at 11 AM EDT where we will discuss how to increase reduced manganese availability in soils.

2020-06-11T07:43:44-05:00June 12th, 2020|Tags: , , |
Go to Top