fbpx

Dead Canadian thistle in a corn crop

An organic farm in Pennsylvania had challenges with Canadian thistle in one pasture section. One-fourth of the farm was in intensively managed rotationally grazed pastures for a five to seven-year period before shifting to other crops, and then going back to pasture.

After the pasture sod was plowed down,  biological amendments were applied and tilled in, and corn was planted. The corn and thistles both grew quickly. Cultivation cleaned out the thistles between the rows, but those in the row escaped. When I visited the fields in mid-summer, the crop was approaching the dent stage, and the Canadian thistle that survived the cultivator were all dead. Samples of the dead plants were sent to a lab to identify if any usual pathogens caused the weeds to die, but no known pathogens were identified.

The corn crop went on to make 32+ tons per acre of silage.

This field is now back in pasture for several years, and the thistles have not returned. Do you have any idea why they may have died?

2020-07-13T14:50:14-05:00July 14th, 2020|Tags: , |

Wood chips converted to worm castings in six weeks

A layer of wood chips several inches deep was applied in an orchard underneath the tree row, followed with a large application of SeaShield and Rejuvenate.

The top two photos were taken a few days after application, where the residue was completely covered with fungal mycelium.

The bottom two photos were taken six weeks after the application. All the smaller wood chips have been completely consumed, only larger chunks remain, and the chip layer has been replaced with a layer of earthworm castings about an inch deep.

Can you imagine the root health and nutrient absorption from this soil?

2020-07-13T06:01:39-05:00July 13th, 2020|Tags: , , |

Aphids only on milkweed in a blueberry block

These milkweed plants are being consumed by aphids while the blueberry leaves inches away have no aphids on them at all. This is a clear indicator that the soil microbial population and mineral balance is more supportive of blueberries than it is of milkweed.

The aphids are attracted to the unhealthy plants, and are taking them out of the ecosystem. If the milkweed were healthier than the blueberries, the aphids would be on the blueberries, and leave the milkweed untouched.

Since the aphids are now consuming a plant that might be considered a ‘weed’ in this particular context, does that make the aphids a pest for attacking the plants, or a beneficial ‘biocontrol’ because they are removing the ‘weed’?

2020-06-25T13:37:14-05:00July 10th, 2020|Tags: , , , |

Larry Phelan biological buffering

The objective of regenerative farming systems is to develop soils with a robust microbial community which can supply all of a crops nutritional requirements without the need for added fertilizers. The pathway to getting there is to harness the photosynthetic engine every day of the year possible and cycle as large a volume of carbon as possible as a food source for soil biology.

While on this pathway, one of the most valuable things we can do is, in Michael McNeill’s words “stop poisoning your soil!”

One very significant way many farmers poison their soil and inhibit their microbial community is with nitrogen fertilizer applications. The less carbon that is in the soil, the less biological buffering the soil has, the more pronounced the damage from nitrogen applications is to the soil microbial community. In a previous post I described how to buffer nitrogen applications so as to not have this damaging effect.

In this conversation, Larry Phelan desrcibes the capacity of soil organisms to absorb the excessive nitrogen that is so often applied, and then release it later in the crops development cycle.

John: What you’re describing, in essence, if I’m understanding you correctly, is the capacity of biology in the soil to absorb large amounts of nutrients that are applied and to contain those nutrients within their cells and then release them over a period of time. Is that what you’re describing?

Larry: Yes. So, even in this artificial situation that we created—where we put inorganic fertilizer into a soil that had an organic history—even in that situation, that organic soil from that organic farm had enough carbon lying around that those microbes could actually use that inorganic form of nitrogen, in combination with the carbon that was there, and then bring that into that microbial community. As they then die off and you have other organisms that are feeding on those microbes, they then allow for the mineralization of some of these nitrogenous compounds, and then it becomes available to the plant.

To follow up on this, we studied the dynamics of nitrogen across the growing season in these organic and conventional corn fields. Just as we would have expected, when you look at a conventional system, where in the spring the farmer is putting down relatively high levels of soluble fertilizer and really not much carbon, other than maybe some plant residue, you see huge fluctuations in terms of the availability of that nitrogen. So, of course, before fertilization, nitrogen levels are very low, so the farmer applies the fertilizer. Now they shoot way up, well above what the plant can use, and then over the course of the growing season that nitrogen declines.

But if you look at that same pattern in an organic system, what we found was that the levels of soluble nitrogen in the soil solution generally were lower overall, and they also didn’t vary much during the course of the year. That plant was getting this constant supply of nitrogen throughout the growing season. What we found when we compared these farms was that, overall, there was no difference in terms of the production at the end of the year between the organic and the conventional farms.

2020-06-25T09:24:20-05:00July 8th, 2020|Tags: , , |

Feeding plants to provide digestible nutrients for the following crop

The growers we work with who regenerate soil the most rapidly, and produce the most profitable crops, care for the cover crops as closely as their cash crops. Cover crops are planted with inoculants and nutritional support, and foliar fed. When you calculate the increased efficiency of a cover crop at 60% of it’s photosynthetic capacity as compared to 20%, and realize that it is sequestering three times more carbon in each 24 hour photoperiod, you quickly realize there is no other management practice which can build soil organic matter levels as inexpensively as harnessing the photosynthetic engine of a crop.

These crops can stimulate biology and build a large reserve of plant available nutrients that completely displaces the need for any soil applied fertilizers for following crops.

Here are some thoughts from my discussion with Gary Zimmer on this topic.

John: We’ve been talking about nitrogen management, and a few moments ago you were describing humic substances. One of the pieces that you and I spoke about in our prior conversation was the idea of delivering nutrients much more efficiently and much more effectively using carbon-based fertilizers. I think this ties in directly to our nitrogen management conversation, because what we’re really talking about is the need to have a balanced carbon-to-nitrogen ratio in the soil profile, and to hold that and to stabilize it and to keep it plant available. How does that concept of carbon-stabilizing nutrients transfer to other nutrients, in addition to nitrogen? And how do you utilize that?

Gary: I think this goes back to digestibility. In order to have the biology do its work and break it down, you need trace minerals. How do we make them available?  Some of them, like molybdenum, are pretty small additions. How do we take that addition in very small amounts and make sure it’s active and plant available? By burning up carbon, those nutrients get lost. That’s the whole thing with carbon. Let’s say I just put some of this stuff out there and grew a plant and then managed the digestibility of that plant. I’m now going to be more time released, and I’m going to be distributed better.  A farmer asked me the other day if he should put trace minerals on his cover crop. A cover crop is not a cover. It’s not covering anything―it’s actually a crop that you’re using to distribute minerals for the next crop, and you need to manage it accordingly. Managing the carbon ratio comes in line in terms of digestibility. If I’m too low on carbon or nitrogen, it’s going to take a long time to break down. I can set myself up for disease and insects, and I don’t get availability of my minerals.  I’m a dairy nutritionist. That’s how I got introduced to some of these things forty years ago―to create better feed for cows. When we started, I spent nine years at the university balancing rations based on a set of numbers. If you have more digestible feed and the mineral levels in your feed are higher, that highly digestible feed might have 95 percent of its minerals available to the cow. The stuff you buy in bags might only be 40 percent available.  When we started balancing rations for cows―and I think it’s the same thing with soils― once we started using highly mineralized, digestible feeds, we could actually cheat on numbers and cut down what we applied by at least 25 percent. We could back off those ration numbers with a lot of success once they started mixing minerals into highly digestible feeds.  In the soil it would work the same way. That’s why it takes several years to really get this going. For us as organic farmers, during that two years in transition from conventional to organic, we remineralized and grew cover crops to build up our soil. Once it was organic it was far from perfect, but we started getting a higher nutrient exchange. It’s all based on first getting out there and building carbon-biological cycles with plants and biology.

John: Essentially, Gary, what you’re describing is that farmers should grow their cover crops as a ration for soil biology―similar to growing a ration for rumen biology. In saying that, do you believe that farmers should manage their cover crops as carefully and as well as they do their actual crops?

Gary: Yes, I think those cover crops are my reserve to hold and release the kind of minerals that I want to release.  The other day a guy asked if he could just spray homogenized trace minerals onto his cover crop. I don’t know whether they get absorbed or where they go; I think that’s certainly not a bad idea. Then asked if he could use a cheaper source of those minerals, and I said that they still have to be able to get into the plant. I’m not sure how that would really work. But it starts with the process. The last thing I want them to do is spend money on something and have it just be another stone added to the big pile of stuff that we already have in our soil.

John: We have observed that our most successful growers―those who have regenerated soil health the most rapidly and who have achieved the greatest crop responses―manage their cover crops as carefully as they do their crops. They use foliar sprays and will put on fertilizers; they will manage those crops as well as they do the crops that they’re actually harvesting.

Gary: I’m 100 percent in agreement with that. I was just at some farms that had some really poor stands of alfalfa, and their cover crops were half a stand. They said that they weren’t getting much success. But they didn’t really have a very good cover crop or a very good alfalfa stand to work back into the ground to feed the soil―obviously they’re not going to get all the benefits.  I think you’re absolutely right. I think that’s a huge ticket to using cover crops. As a dairy farm, we only leave our alfalfa in one or two years. We like to take that beautiful, lush stand of alfalfa grasses and let it get up to that highly digestible stage and work it back into the soil. And people say, “Oh my gosh―I could be feeding that to my cows!” But I say that I am feeding it―to my soil livestock. They need to be just as well fed as our cows.

2020-06-25T08:53:52-05:00July 7th, 2020|Tags: , , , |

Bark splitting on trunk and branches caused by calcium deficiency

The split bark you see here is an extreme example of one calcium deficiency symptom in fruit and nut trees. When trees have adequate levels of calcium the bark can expand rapidly and does not split, maintaining a smooth appearance until they are decades old.

When the bark becomes so tight that it eventually splits from pressure, the flow of water and nutrients to the canopy and the fruit is also limited, which results in reduced quality and nutrient movement into the fruit.

The solution is to make sure that our soils have adequate calcium levels, and a proper balance with other cations. It is important to note that these are two different things. The threshold for disease resistant crop production is at least 1000 ppm calcium in the soil as measured by Mehlich 3 or ammonium acetate extraction. On sandy soils with low cation exchange capacity, soil reports can indicate that the calcium supply is balanced with other cations, and no more needs to be added, even when the soil only contains 400-500 ppm. In this type of scenario, more calcium definitely needs to be added to maintain crop health and performance.

2020-06-25T08:26:12-05:00July 6th, 2020|Tags: , , |

Large root systems produce many more fruit buds

Green beans are one of the crops we refer to as a ‘multi-fruiting’ crop, which is a crop that blooms and sets fruit for an extended period, and has the capacity to increase the number of buds based on health and nutritional integrity.

Beans can have one pod per node or a dozen. Tomatoes can have two tomatoes per cluster, or ten. Cucumbers can have one female bud per node, or three. For these multi-fruiting crops, it is possible to produce large yield increases by increasing the number of fruit per plant when we make sure the soil has the capacity to deliver all the nutrition needed to fill the fruit load.

The key to producing short tight internodes and many fruit buds is to make sure these plants have an abundance of cytokinins being produced each day. (There is a closely connected conversation about maintaining a balance between nutrients which drive vegetative growth and reproductive growth, which you can learn about in the podcast here.)

Cytokinins are produced in growing root tips and cobalt is a key enzyme cofactor needed for cytokinin synthesis.

The key is that a growing root tip is needed to produce cytokinins, particularly at the stages of bud initation and pollination.

A healthy disease resistant plant will always be cytokinin dominant, rather than auxin dominant. This means they will always have more growing root tips (producing cytokinins) than they have growing shoot tips or seeds (producing auxins). It also means that these plants will have larger root biomass than vegetative biomass.

This is a topic worth diving deeply into, particularly if you are growing these types of crops.

Increasing the pod count on soybeans by more than 50% is easy. Filling those beans to produced an increased yield is where the focused attention needs to be. Similar increases are possible on many other crops.

2020-06-23T15:05:19-05:00July 3rd, 2020|Tags: , , , |

Unhealthy people attract mosquitos, just like unhealthy plants attract other insects

Insects will only eat that which is digestible to their system.

From the interview with Tom Dykstra:

John: I have friends who will attract every mosquito for dozens of yards around, and others who, for all practical purposes, are mosquito-immune. Can you describe the differences?

Tom: I hate saying this, but that is the difference between healthy people and unhealthy people. If you have digestible blood, the insect can use your blood. If you have healthy blood, the insect is not attracted to it. Does this mean you’re healthy all the time? No. People have certain states of healthiness and unhealthiness. But as long as your blood is digestible, it’s going to be attractive to an insect.

It’s the digestive system. Insects do not have very good digestive systems. Stuff has to come in digested to them because they cannot digest things. They just don’t have the enzymes. They’re garbage collectors. They eat muck. They eat garbage. They eat bad stuff. They eat stuff that we don’t want to eat. Take a look at cockroaches, for example, or fruit flies. They’re always around decaying fruit. They’re not around healthy fruit. These insects that are keying in on very specific plants. Or even, let’s say, the fruiting structures of a tomato—that’s what they are keying in on.

Mosquitoes need something that’s digestible. When they take a blood meal, it must be incorporated through the process of vitellogenesis: taking those nutrients in your blood and incorporating them into an egg. This occurs in about twenty-four hours—very, very quickly. So if they’re not getting digestible blood, they cannot, through the process of vitellogenesis, take those nutrients and feed their eggs. And that’s a problem, because obviously the mosquito wants to feed its egg. The only reason it takes a blood meal is to feed its eggs.

We do have these differences among individuals. Some are just more digestible than others, and they’re going to be more attractive. Grasshoppers have a choice as to what crop they eat, and mosquitoes have a choice as to what blood meal they wish to get. Through their antenna and all of their senses, they detect that someone is more digestible than another, and they’re going to go after that individual. Even though that may offend some people, I do feel an obligation to tell the truth the way that I know it, according to the information that has been given to me for the past twenty to thirty years of my life studying insects.

John: I very much doubt that you’re offending people. I would say that you’re simply communicating some very intriguing ideas that many of us have observed to be true in real life and have wondered about the differences. So thank you for sharing that.

Tom: I’m happy to do so. When you go to the supermarket and you see fruit flies flying around the tomatoes, some people think, “Oh, I don’t want these tomatoes—they have fruit flies in them.” But honestly, all you have to do is find that one tomato near the bottom that’s injured, and that’s where all the fruit flies are located—near the one that’s unhealthy. And that essentially equates to that which is digestible. A tomato that is degrading—that is decomposing—is being broken down. And when it’s being broken down, it’s digestible. Insects will only eat that which is digestible to their system.

2020-06-23T14:38:59-05:00July 2nd, 2020|Tags: , , |

How to measure product performance with Brix

I often get asked about the use of a refractomer and Brix readings as a tool to evaluate plant health. It can be a useful tool in the hands of a dedicated frequent user. However, the tool provides highly variable readings, and requires an observant and experienced user to produce a reliable indicator of crop health. I described the reasons we don’t use a refractometer as a management tool in this blog post.

The best method I am aware of to accurately use a refractometer as a management tool was described by Arden Andersen in his book Science in Agriculture:

Of course, you can achieve similar outcomes much more accurately and easily and without the extensive time requirements when you use sap analysis.

PROCEDURE

Construct two or more plastic or wire rings that encircle a 5 or 10 square-foot area. The area of a circle is 3.1417 times the radius squared. The circumference of a circle is 2 times 3.1417 times the radius. A ring encircling 5 square feet would have a diameter of 2.523 feet (30.28 inches) and a circumference of 7.93 feet (95.15 inches). A ring encircling 10 square feet would have a diameter or 3.568 feet (42.8 inches) and a circumference of 11.21 feet (134.52 inches). Because there are 43,560 square feet in an acre, 10 square feet equal 1/4356 of an acre. Using a 10 square foot ring makes calculations easier, but this size of ring is more difficult to carry around unless you make it so that it can be disassembled.

Take these rings to the field and drop them 3 to 5 feet apart. One ring will be used as a control or check area; the others will be designated as test areas. Check the refractometer reading within each ring and record these readings. Be consistent with the methodology and the parts of the plants used for these readings so each test area is sampled identically.

In a spray bottle, mix the exact fertilizer and water ratio that your sprayer is calibrated to apply. For example, if you would apply 2 quarts per acre of 6-12-6 in 20 gallons of water, you would mix 0.8 ounces of 6-12-6 in 1 quart of water. Twenty gallons equal 80 quarts, so a 1-quart mix for your spray bottle would be 1/80 of your per-acre mix. This is calculated by multiplying 2 quarts by 32 fluid ounces per quart to get 64 ounces. Divide 64 by 80 to get 0.8 ounces of 6-12-6 for 1 quart of water.

Next, you need to determine the number of squirts from the spray bottle to apply to the 10 square-foot test area in order to equal a spray rate of 20 gallons per acre. Because 10 square feet equal 1/4356 of an acre that would get 20 gallons of spray, you would apply 1/4356 of 20 gallons or approximately 0.6 ounces, which is about 2.4 tablespoons. This is calculated by multiplying 20 gallons by 128 fluid ounces per gallon (2,560 ounces), and dividing this number by 4,356. Because there are about 4 tablespoons per ounce, 0.6 ounces times 4 tablespoons per ounce equals 2.4 tablespoons.

Take a measuring cup and count the number of squirts from your 1-quart spray bottle to equal 0.6 ounces or 2.4 tablespoons. This is the number of squirts you will apply to your 10-square-foot test area to equal the amount that would be applied if you sprayed the field with your sprayer at 20 gallons per acre.

After misting this spray mix on the test area, wait 30 to 60 minutes and recheck the refractometer reading of the crop in the test area, as well as the control. If the brix reading in the test area increased by at least two full points net, the spray is desirable and would benefit the field. You can then spray the entire field with the confidence that the spray is beneficial. You can mix several different sprays and check each one. If the refractometer reading remains unchanged or drops, the spray is undesirable for that particular day for that particular crop. It is not necessarily a reflection on the product quality, but rather the plant’s need at that time. The only exception to this guideline is when there might be a delayed reaction where no change in refractometer reading is observed for several hours. In this case, leave the rings in the field for 24 hours and recheck the brix reading of both the control and test areas. If an increase in the brix reading of the test area is observed, this spray would then be sprayed on the entire field. The delayed response might occur where a specific prescription has been formulated for a particular field and the spray test is a verification of its appropriateness. The delay could be a result of weather, temperature, water, and so on.

Keep in mind that, before and during a storm, the refractometer readings of the growing crop will be lower, as they will after several days of cloudy weather. The lower the nutrient reserve, the more these refractometer values will be lowered by such circumstances. Imperative to maintaining adequate crop brix readings is the continuous maintenance of the soil conductivity reading. It must remain above a net 200 ergs, or you will not be able to hold the brix above 12 when you do get it to that level.

It is recommended that you purchase an automatic temperature compensated refractometer so that your readings will be more accurate and you will not have to calibrate the refractometer every time the temperature changes.

To reiterate, be consistent in the location of the plant where the refractometer reading is taken. The poorer the plant’s health (correlated to lower refractometer readings), the more the brix readings will vary throughout the plant and throughout the day and season. Always compare the refractometer values in the test area with those in the control area.

You desire a net increase, meaning an increase over the change observed in the control. If the control area had no change and your test area increased by two points, you have a net increase of two. But if the control area increased by one (which can happen as the sun rises in the morning) and your test area increased by two, you have a net increase of one.

The question often arises: How can commodities with high refractometer readings have insect and disease problems? Common examples include sweet com at 24 brix having corn ear worms, and grapes at 18 brix having white flies, mites, and leaf hoppers. The answer is that the refractometer reading taken at the weakest part of the plant in question must be considered. The aforementioned problems indicate that the refractometer readings were taken of selected plant parts (e.g., ear, plant) only, and not of all the parts of the plant. The weakest link determines the outcome of insect and disease infestation. An ear of com at 24 brix with corn ear worms inevitably will have leaf or stalk refractometer readings below 12. Grapes at 18 brix with insect infestation inevitably will have cane or leaf refractometer readings below 12 brix.

With apples, the opposite seems to occur. An apple with apple scab fungus will itself have a low refractometer reading (below 12); however, the leaves on the branch supporting the sick apple will have very high refractometer values (above 12 or even in the upper 20s). In any event, there is a mineral imbalance/deficiency in the crop.

Modern hybridization has produced plants that create such previously mentioned imbalances to satisfy cosmetic desires without considering mineral balance or the plant’s natural ability to satisfy cosmetic desires if it is just provided with the necessary mineral to do so. Hybridization has resulted in plants that will accumulate sugars in given parts, yet not be able to metabolize, transfer, or convert them to plant parts.

2020-06-23T14:24:47-05:00July 1st, 2020|Tags: , |

The value of targeting applications with sap analysis

One characteristic of top tier growers is the desire to make decisions based on manage-able data. I have been an advocate of sap analysis to evaluate the need for product applications and to evaluate product performance for almost a decade. In that time, many growers have embraced sap analysis and can’t say enough good things about how it has saved them money by reducing fertilizer inputs, how it has made them money by increasing crop yields and quality.

A few growers look at the cost of sap analysis and say, “I can’t afford that.” If you are a small scale market gardner, that may be the case. If you are a professional grower managing a professional enterprise, you can’t afford not to use sap analysis. If you choose not to use it, you chould be clearly aware that those growers who do are rapidly becoming the low cost producers, with the highest profitability.

Mike Omeg from Orchard View shared his experiences with sap analysis on our podcast interview, and I believe you will find them valuable.

Mike: I started the process of focusing on the soil. Many folks have done the same thing, but I started to put on every biological stimulant and inoculant that was available to see what worked. As one would expect, there are some products that work better than others.

What I really learned was that hindsight is indeed 20/20. I found that spraying inoculants onto the bare soil just didn’t make sense, without having material there to protect everything that you’re putting on―to feed everything that you’re putting on. It didn’t make sense. I began to put on material before and after my mulch, because there are some things I wanted to be covered by the mulch and in contact with the soil, and there are other things that I wanted to have on top of the mulch, to add some biological horsepower to the natural processes and to kickstart the natural processes of breaking down that mulch and having it go to work for us in the soil.

One of the things that I began doing was using a lot of fish products. I landed upon a product that I really liked that’s made with salmon and crab. It really pushed forward our soil enhancement efforts, and we saw direct benefit in the crop. We were still a conventionally managed orchard, but we applied this fish product onto the soil and onto the foliage of the trees, and we saw a big return on our investment.

We tried lots of other fish products. As you know, many are available in the market. Some of them work better than others. But the ones we found that were made with salmon and crab here on the West Coast really pushed us forward in our efforts. They’re one of the base components to all my nutrition programs.

John: What other nutritional applications are you using today, and how have they shifted over the last decade or so, since you started experimenting?

Mike: We use nutrition as it’s necessary now. We’re able to do that because we utilize a technique to monitor what’s going on in our orchard in real time throughout the entire season, and that technique is sap analysis.

For many years, in about January or February, I would sit down and I would look at all of the returns that we had for the orchard. I would then look at maybe a couple of leaf samples that we had pulled during the growing season and maybe a soil sample. And I would write down everything I was going to do the following season, and we would follow that recipe. We would make minor tweaks, depending on the size of the crop―if we were going to have a light yield or an average yield or a heavy yield. Maybe we would have a disease problem that started developing, so we would boost a nutrient or two. But we essentially would just follow what was written down on the back of the envelope in the winter. Eight months from when something had been written down, we were doing it.

But an orchard―or any farm―is not a static system. There are all kinds of in-season changes that require us to change our approach in nutrition. But there was no technology that I had confidence in that could tell me what was going on at any moment in my orchard.

Sap analysis changed that. Every two weeks we take a sample―from the time the first leaves are expanded until right before leaf drop. The entire growing season of our orchard, we’re sampling, and we’re sending those samples off and we’re getting the results back and we’re calibrating every nutrient application we put on based on those samples, because we have a real-time picture of what our trees have need for or what they have excess of. Every nutrient in every tank we spray is there because the sap analysis has indicated it needs to be there.

It’s very difficult for me to give generalities about what nutrients we apply. I would love to do that―I’d love to say that our nutrient program is based on X, Y, and Z. But I honestly can only say that fish is something that is in virtually every application. The other nutrients depend upon the results of the sap analysis.

John: How similar are your current types of nutrient applications to what they might have been before you were using sap analysis? Are there still general similarities? Were you applying similar trace minerals? Perhaps a different way of asking the question would be, what were the changes that sap analysis indicated that really surprised you or that were unexpected?

Mike: That’s a great question. I’ll give you some examples.

Before I started doing sap analysis, I would put on semi-loads of triple-20 foliar fertilizer. I would put on large amounts of zinc in the spring, thinking that the trees needed zinc in order to generate bigger leaves, because we all know that bigger leaves on the tree mean more carbohydrates being generated for the tree to size those cherries, and that’s what our goal was.

I’d put on lots of triple-20 and lots of zinc. What I found was that I was shooting myself in the foot because my trees did not need zinc; they did not need triple-20. The potassium I was applying in that triple-20 was pushing calcium out of my trees. When we started doing sap analysis, I found myself putting on oodles and oodles of calcium, and no triple-20, because the trees had become deficient in calcium.

Over time, I was putting on more calcium than I ever could have imagined. And I was putting on no potassium and very little, if any, zinc. That was a big surprise to me, because our baseline program was actually harming our genetic potential of the trees to generate the returns we wanted. I never would have known that I was actually taking away from the potential of the tree unless I had done sap analysis. So that was a big surprise.

I think it was Bill Gates who said something like, “People generally overestimate what they can do in one year and underestimate what they can do in ten.” I love that saying, because as we’ve gone through time, we see things happening in the sap analysis that are surprising.

For example, like I said, we applied lots and lots of calcium when we first started this process years ago. What we see now is actually that our calcium levels are quite good. I never thought I would have said that, given how much calcium we put on. But through the various activities we’ve been doing―focusing on our soil and our foliar nutrition, based on sap analysis―we’ve gotten our calcium levels up to where I’m comfortable with them.

Believe it or not―I never thought I would say this in a million years―we actually had a difficult time keeping our nitrogen levels up in the last growing season. I found myself actually putting on a large amount of nitrogen, relative to what we’d done in the past, because our nitrogen levels weren’t high. We needed them to be higher. That was a big surprise.

I never would have done the right thing and put on nitrogen, and backed off on our calcium applications, had I not had sap analysis right there in front of me, showing me the trends in those two nutrients and allowing me to take action to correct them.

John: We’ve certainly observed that adopting sap analysis is one of the hallmarks of really exceptional growers. Because if you’re not testing, and if you’re not measuring, then you’re just guessing. There are many growers who have historically been comfortable with guessing, and that’s rapidly shifting and changing.

Mike: It sure is. There are probably growers out there who are so in-tune with their crop that they might be able to look and be lucky. Then they tell themselves that they’re never wrong. And boy, that’s a mistake.

I think that sap analysis has been foundational in allowing me to efficiently use the biologically intensive techniques I’ve been using on my farm and to have a return on investment. I don’t sell my fruit direct-to-consumer―I sell my fruit into the wholesale market. I don’t have the luxury of my own brand―my face on the package, so to speak. My fruit is anonymous in the marketplace. The only thing that my fruit has to speak for itself in the marketplace is the size and quality of the fruit.

Because of that competitiveness in the market, I have to make sure I am very efficiently managing my inputs, because I don’t receive a brand premium. I get a premium price because my quality is above average, generally. Nobody’s perfect, and it’s not always that way, but the quality of my fruit is above average. And it needs to be if I want to compete in the wholesale market.

The use of bio-intensive practices has to be done in a way that ensures a return on investment, because these expenses are added expenses versus the conventional fruit that I’m competing against in the marketplace. They often require higher levels of management and labor―which, of course, are two of the more expensive things for a business.

But by doing sap analysis, I am able to make sure that I’m hitting the mark with these techniques to the best of my ability. That adds a very important boost to the return on investment, because we’re targeting them perfectly. The efficacy of that investment becomes quite high when, instead of just guessing with something that’s an expensive input, you’re putting an expensive input right where it needs to be at the right time, in the right amount. The return on investment is quite substantial when you start doing that.

You can learn more about sap analysis from Crop Health Labs.

2020-06-23T13:03:13-05:00June 30th, 2020|Tags: , |
Go to Top