fbpx

How to Propagate Aphids

It is important to propagate aphids in our fields so the beneficial insects such as lady beetles have something to feed on. It is quite easy to produce a tremendous aphid population which can sustain a large number of beneficials and not be negatively impacted. We just need to give them the right environment.

Here are the easy steps to produce an optimal environment for aphids, which require free nitrates in the plant sap.

Step one, apply more nitrogen then the plants can utilize at the current growth stage.

Step two, do not supply magnesium for better photosynthesis.

Step three, do not apply sulfur the plants needs to produce sulfur-bearing amino acids and complete proteins.

Step four, do not supply molybdenum for the nitrate reductase enzyme.

Step five, do not apply any boron that might boost plant immunity.

If you follow these five very simple steps, you can be sure that your crop will provide the perfect food source for aphids. In addition, it will also be the optimal food source for many other larval insects such as corn rootworm, earworm, corn borer, cabbage looper, tomato hornworm, and others. Really for any larvae. Propagating these larvae provides a ready food source for songbirds and beneficial insects, a valuable ecosystem service.

Of course, if you do not desire to propagate these insects on your crops, the solution is obvious. Do the reverse of the five easy steps, and these insects will not be able to use your plants as a food source.

Mining the sky, not the soil

Plants are mining the sky, not the soil. Plants are greater than 90% carbon, hydrogen, oxygen and nitrogen, all contributed from the air and water, not the soil.

Here is an excerpt from Charles Walters:

Jan Baptista van Helmont, a 17th century Flemish physician, started getting a handle on exactly what happens when he performed his now famous tree experiment. He simply wanted to know how soil matter was being displaced when plant life grew. No one could measure such a proposition in a field, or in a forest. So van Helmont planted a willow tree in a large earthen tub. The little sprig weighed in at 5 pounds. Soil used in the experiment scaled in at an even 200 pounds. The tub was then covered so that only a small hole for the tree trunk and one for watering remained.

Five years later the tree was not only larger, it now weighed 164 pounds. Obviously, reasoned van Helmont, if the willow tree picked up the difference between 5 pounds and 164 pounds, then the soil remaining in the tub should weigh only 41 pounds, potting material having been reduced to oven dry soil for the post growth weighin. The results proved van Helmont hopelessly wrong. After contributing to the tree’s growth for five years, the 200 pounds of soil had lost only 2 ounces. Van Helmont pondered the problem in deep consternation. Could it be that all this growth came from the water he had given the tubbed tree all these years? Surely this was the answer.1

We have learned a lot in the decades since this experiment. 

And we have also forgotten. 

The soil lost only 2 ounces out of 200 pounds, while the plant gained 164 pounds. 

At the end of the growing period, how much of the 200 pounds of soil do you suppose was organic matter? How much might there have been at the beginning?

Of the 164 pounds of plant biomass, how much do you suppose was mineral content? How much had the plant extracted that was no longer present?

We know that well-managed crops contribute more organic material to the soil than they remove, even when 100% of the above-ground biomass is removed from the field. Healthy soil and crop systems are always gaining carbon, and building organic matter. Mismanaged crops deplete soil organic matter. 

What remains to be better defined is the mineral contribution. Experiential evidence suggests that when crops are healthy, the level of soil available minerals constantly increases as well, tapping into the soil mineral matrix of reserves. How many centuries can that be maintained, and what depth of soil profile should we calculate to answer that question? 

  1. Walters, C. Eco-farm: An Acres USA Primer. (Acres USA, 2003).

 

2020-03-16T13:39:03-05:00December 17th, 2019|Tags: , , |

Bacterial resilience to antibiotics

Antibiotics were first discovered being produced by a soil-borne fungus. We have identified many different antibiotics that are made by plants and fungus, and even synthesized some on our own. Many of the anti-biotics we have developed are not necessarily labeled as such. Many herbicides and pesticides would be examples of an antimicrobial that is applied to agricultural soils. The case for glyphosate is now well established, and others are getting to be better known.

When we consider the widespread use of antibiotics on our soils and in livestock feed we might wonder about the implications for the microbial community in our soils. 

I found this excerpt from Stephen Harrod Buhner1 thought-provoking: 

Once a bacterium develops a method for countering an antibiotic, it systemically begins to pass the knowledge on to other bacteria – not just its offspring – at an extremely rapid rate. Under the pressure of antibiotics, bacteria are interacting with as many other forms and numbers of bacteria as they can. In fact, bacteria are communicating across bacterial species, genus, and family lines, something they were never known to do before the advent of commercial antibiotics. And the first thing they share? Well, it’s resistance information.

Bacteria can share resistance information directly, or simply extrude it from their cells, allowing it to be picked up but later by roving bacteria. They often experiment, combining resistance information from multiple sources in unique ways that increase resistance, generate new resistance pathways, or even stimulate resistance forms that are not yet necessary. Even bacteria in hibernating or moribund states will share whatever information on resistance they have with any bacteria that encounter them. When bacteria take up any encoded information on resistance they weave it into their own dna and this acquired resistance becomes a genetic trait that can be passed on to their descendants forever. As Gaian researchers Williams and Lenton comment…

Microbe transfer between local populations carries genetic information that changes species composition and thus alters the nature of each community’s interaction with its local environment2.

“The nature of each community’s interaction with its local environment” changes. One aspect of that:  as bacteria gain resistance they pass that knowledge on to all forms of bacteria they meet. They are not competing with each other for resources, as standard evolutionary theory predicted, but rather promiscuously cooperating in the sharing of survival information. “More surprisingly,” one research group commented,  “is the apparent movement of genes, such as tetQ and ermB between members of the normal microflora of humans and animals, populations of bacteria that differ in species composition.” Anaerobic and aerobic, gram-positive and gram-negative, spirochetes and plasmodial parasites, all are exchanging resistance information. Something that, prior to antibiotic usage, was never known to occur.

And, irritatingly, bacteria are generating resistance to antibiotics we haven’t even thought of yet. For example, after placing a single bacterial species in a nutrient solution containing sublethal doses of a newly-developed and rare antibiotic, researchers found that within a short period of time the bacteria developed resistance to that antibiotic and to twelve other antibiotics that they had never before encountered – some of which were structurally dissimilar to the first. Stuart Levy observes that “it’s almost as if bacteria strategically anticipate the confrontation of other drugs when they resist one.”4

 

With the growing understanding of how we have compromised our soil biology, we need to consider how we can regenerate that microbiome, add the organisms that have been lost, and recover those that are present but struggling. This is where microbial inoculants, diverse plant species, compost, and compost teas become important tools in agriculture management systems.

 

  1. Buhner, S. H. Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth. (Simon and Schuster, 2014).
  2. Williams, H. & Lenton, T. Microbial Gaia: A new model for the evolution of environmental regulation. Gaia Circular, 2007 14–18 (2007).
  3. Wax, R. G., Lewis, K., Salyers, A. A. & Taber, H. Bacterial resistance to antimicrobials. (CRC press, 2007).
  4. Levy, S. B. The Antibiotic Paradox: How Miracle Drugs Are Destroying the Miracle. (Springer, 2013).

 

2020-03-16T13:45:20-05:00December 16th, 2019|Tags: , , , , |

What are the goals of organic and regenerative agriculture?

What are the objectives of regenerative agriculture ecosystems?

I can think of several possibilities:

  1. Produce enough exceptional quality, nutrient-dense, biofortified ‘food as medicine’ to influence public health and feed the global population a healthy diet.
  2. Produce pesticide-free food.
  3. Incentivize and proliferate small scale growers to develop local and regional food production.
  4. Develop agricultural systems that regenerate soil and ecosystem health and have them become adopted globally.
  5. Develop agricultural models that rapidly sequester carbon dioxide down to levels under 350 ppm.
  6. Reverse desertification, restore hydrological cycles and cool the climate.

Let’s be clear that these are different goals. Each is realistic and achievable. It is possible to achieve all of them together, but achieving one does not necessarily mean we achieve the others.

2020-03-16T13:45:40-05:00December 14th, 2019|Tags: , , |

Source Causes

Mutations are the results of causes, not the causes of results. ~ Grantly Dick Read

The word ‘mutations’ in the quote above could appropriately be replaced with ‘disease’ or ‘pests’ or ‘pathogens’.

Any organism we assign one of these labels produces infections because of other causes, not only because the organism was present.

Other causes are often environmental in nature. Differences in the presence of beneficial microbial populations and soil nutrient levels determine whether a plant develops an infection more reliably than only considering the presence of an organism.

2020-03-16T13:36:30-05:00December 13th, 2019|Tags: |

What defines a pest?

What is a pest?

When a wolf succeeds in catching a rabbit for dinner, which of them is a pest?

Is a wolf a pest while it catches rabbits and deer? When it catches a  lamb?

Is a rabbit a pest while it eats clover, or only when it eats the greens in the garden?

Is a ladybeetle a pest while it consumes aphids in the fields, or only when they swarm houses in the fall?

Is the definition of a ‘pest’ completely human-centric? It seems we call these living beings pests only when they bother us, but not when they bother other organisms we are not personally invested in.

We have deeply interdependent relationships with bacteria, fungi, viruses, nematodes, insects, amphibians, reptiles, mammals and birds of every kind. Almost all of these organisms are quite benign in healthy ecosystems. When the ecosystem is degraded, they proliferate, and begin feeding on the animals or plants we have a vested interest in. Then we proceed to label them as a pest or a pathogen.

But if it is us that has mismanaged the ecosystem, are we the pathogen?

The environment/ecosystem determines the presence and proliferation of all these living beings.

If we are to be stewards of these ecosystems, we must acknowledge that it is our management of the environment that determines whether these organisms express themselves as a benign participant or as a pest.

If we want to accept responsibility and make a difference, it does not seem useful to label living beings as pests.

Labeling is a subtle subconscious shifting of responsibility. “I am not responsible for these pests! They invaded! From out there. They are out of control. The weather was awful, the season was wet/dry/hot/cold.”

Neither the wolf nor the rabbit is a pest. They are symbionts in the environment and are dependent on the greater ecosystems they are a part of to sustain themselves.

Neither spider mites nor fusarium is a pest or a pathogen. Nor are any other insects, nematodes, bacteria or fungi. They are simply present in the environment we have created for them. If they proliferate to the point of causing crop loss, it is because we have managed the ecosystem to create an optimal environment for them.

If we desire them to not be present to the point of causing economic damage, we only need to manage the ecosystem differently.

2020-05-22T07:14:59-05:00December 12th, 2019|Tags: , , , |

Building Available Phosphorus without soluble fertilizers

Nutrients should be available, but not soluble ~ William Albrecht

To develop regenerative farming systems, it is important that any soil amendments or fertilizers we add have a positive effect on both plant health and soil biology. It is not acceptable to have a positive effect for one, and a negative for the other.

Many soluble fertilizers are known to have pronounced negative effects on soil biology, particularly nitrogen and phosphorus.

One of the objectives of regenerative agronomy is to develop biological nutrient release to the point where limited or no additional fertilizers are needed to support the crop. A question is, how do you get to this point when your soils are very low in available nutrients to begin with?

In the case of phosphorus, a practice we have recommended for over a decade is to combine rock phosphate with manure before application. We generally observe approximately four times greater phosphorus response in soil and plant sap analysis as compared with an application of straight rock phosphate.

Soluble phosphorus applications are known to suppress mycorrhizal fungi colonization, phosphorus solubilizing bacteria, and phosphatase enzyme activity,  creating a continued dependence on soluble phosphorus applications. Biology has been replaced with spoon feeding chemistry.

New research just out reports that combinations of rock phosphate and manure increase phosphatase enzyme activity and organic matter1.

Increased plant availability, but not water solubility.

Which also means not leachable, and produces no water pollution. Perfect.

1. J. A. Omenda1* K. F. Ngetich1 M. N. Kiboi1 M. W. Mucheru-Muna2 D. N. Mugendi. Soil Organic Carbon and Acid Phosphatase Enzyme Activity Response to Phosphate Rock and Organic Inputs in Acidic Soils of Central Highlands of Kenya in Maize. International Journal of Plant & Soil Science 30, 1–13 (2019).

2020-03-16T13:35:09-05:00December 11th, 2019|Tags: , |

Are diseases present because pesticides were not applied in time?

Do people or animals get bacterial infections because they have an antibiotic deficiency?

Do plants get disease infections because of a pesticide deficiency? If not, why do we apply pesticides before the organism is even present?

Come to think of it, plants do absorb antibiotics synthesized by soil microbes, and they help prevent possible infections. Maybe plants do become infected because of antibiotic deficiencies after all?

In that case, what produces the antibiotic deficiency?

That would be dysfunctional soil biology. Which is likely dysfunctional because of all the pesticide applications the soil has been exposed to.

Perhaps killing the microbes that protect our crops isn’t such a good management strategy.

2020-03-16T13:46:02-05:00December 10th, 2019|Tags: , , |

Fixing nitrogen without Legumes

Legumes don’t fix nitrogen.

Only bacteria do.

And there are many more bacteria capable of fixing nitrogen than those associated with legumes.

We just need to stop killing them, begin encouraging and feeding them, and our soils and crops can be supplied with 100% of the nitrogen requirements at the highest yield levels.

A new report describes some of the rhizobia and other organisms found in the rhizosphere of plants other than legumes1.

The important part, of course, is that these biology need an abundant energy source to be able to fix nitrogen. The more energy they have available, the more N will be fixed. A large part of their energy during the growing period is supplied by plant root exudates. When we have plants with optimum photosynthesis, producing large volumes of exudates, much more N can be sequestered, which leads to higher yields.

1. Yoneyama, T., Terakado-Tonooka, J., Bao, Z. & Minamisawa, K. Molecular Analyses of the Distribution and Function of Diazotrophic Rhizobia and Methanotrophs in the Tissues and Rhizosphere of Non-Leguminous Plants. Plants 8, (2019)

2020-03-16T13:34:25-05:00December 9th, 2019|Tags: , |

Insect susceptibility determined by types of plant sugars

Sugar metabolism and carbohydrate synthesis are at the very foundation of plant health, but we generally don’t learn much about them in agronomy or even entomology. The types of sugars and the relative concentration of different sugars contained within the plant seem to be foundational in determining susceptibility/resistance to many herbivorous insects.

Here are a few excerpts from Harold Willis1 I found interesting:

The role of sugar in insect attack of plants is fascinating. Based on research done on various insect and plant species, apparently insects like moderate amounts of plant sugars and are attracted to plants containing them. But high concentrations of sugars are avoided by leafhoppers, grasshoppers, and the European corn borer2


Alfalfa was found to be resistant to pea aphid when its stem tissues had a more acid ph and higher levels of sugar (pentoses) and pectic substances (larger carbohydrate molecules formed by linked sugars). Pentose sugars are formed from hexose sugars which are the original products of photosynthesis. Alfalfa plants that are normally susceptible to aphids will become resistant if the above-mentioned cellular changes occur3

A possible reason that some insects avoid high sugar plants comes from research by G Fraenkel. Some sugars and sugar alcohol combinations (glucoside and mannoside) interfere with normal utilization of other sugars, and so are toxic to insects (mealworms)4. The inhibitory sugars are found mainly combined with other molecules in plants, but if digested by insects and in the presence of the sugar glucose, their toxic effects occur5.

Our knowledge of plant immunology has progressed well beyond this research in the ’40s and ’50s, but the practical application has fallen well short. I describe how we have applied these principles in our plant health pyramid infographic and on YouTube here.

1. Willis, H. Crop pests and fertilizers – is there a connection?

2. Thorsteinson, A. J. Host Selection in Phytophagous Insects. Annu. Rev. Entomol. 5, 193–218 (1960).

3. Emery, W. T. Temporary Immunity in Alfalfa Ordinarily Susceptible to Attack by the Pea Aphid. Journal of Agricultural Research 73, 33–43 (1946).

4. Fraenkel, G. Inhibitory effects of sugars on the growth of the mealworm, Tenebrio molitor L. J. Cell. Comp. Physiol. 45, 393–408 (1955).

5. Dethier, V. G. & Rhoades, M. V. Sugar preference-aversion functions for the blowfly. J. Exp. Zool. 126, 177–203 (1954).

2020-05-22T07:17:19-05:00December 7th, 2019|Tags: , , , |
Go to Top