fbpx

Direct absorption of molecules

The implications of plant absorption of large molecules and endocytosis are that the present mainstream model of agronomy based on measuring and managing nutrient ions is significantly incomplete, and can not be the basis for a regenerative agriculture without additional testing and management paradigms.

Bargyla Rateaver was one of the first, if not the first advocate for plant absorption of large molecules and endocytosis in North America that I am aware of. The Organic Method Primer she authored is under-appreciated for the encyclopedia of practical and agronomic knowledge it is.

Here are Bargyla’s thoughts on the subject, updated in 1993:

Direct Absorption1

Since the disastrous integration of manmade chemicals into agriculture, a huge structure of error has been built upon the false premise that “only ions can be absorbed”. Based on this, a measurement of soil and recommendation for soil have utilized the concept of “cation exchange” and the “CEC” has been the be-all of soil testing. Small structures such as ions are said to be “able to cross the membrane”. Discussions of the varied means for this fill textbook chapters on the subject of absorption.

We now know that this is all passé, an outdated formula promoted by the greedy minds of the chemical dispensers. There have been a number of investigators over the years who have documented that entire molecules were absorbed, but only small molecules. W. Flaig1 in 1968, speaking at the Vatican’s convocation on organic matter and soil fertility, entitled his work “Uptake of organic substances from soil organic matter by plants and their influence on metabolism”. In Japan, Satoshi Mori and Naoko Nishizawa proved that barley roots preferred to take up organic nitrogen compounds if offered these as well as inorganic forms.2

In the chapter on cover crops, we refer to Fritz Went, who saw in Amazon jungles that mycorrhizae absorb nutrients directly from decaying leaves on the ground. Nora M. Stark, who worked with him, in those early days before endocytosis was known, made the penetrating remark: “It is possible, that in extremely poor soils, mycorrhizae are important in supplying nutrients directly from litter to living roots”. She also mentioned that, in one case, she had “traced a hyphae from a dead fruit into a living feeder root cell”.3

Hainsworth notes, on pg 27, that carnivorous plants absorb digestion products of their prey apparently without reducing them to simple inorganic compounds.

We know now that whole molecules of any size can be taken into cells, and clusters of molecules that are particles, by endocytosis (and fluid phase endocytosis) via coated pits–extremely clever devices by an omniscient Creator: the cell membrane invaginates, trapping molecules on the clathrin-coated membrane surface, thereby forming vesicles to enclose such molecules and carry them through the cell, dropping them en route, and/or dumping unwanted or storage molecules in the vacuoles, finally returning to the cell membrane from which they came. (Plastic beads and bacteria enter via uncoated membrane regions; this takes energy. Large algal cells are taken up by fusion with the larger host protoplast, note L. C. Fowke et al.)

As there are hundreds of these coated pits and ensuing vesicles being constantly formed on cell membranes, the provision for cell absorption of compounds (and clusters of them constituting particles) is amply demonstrated; whole molecule absorption is not a small, erratic, exceptional, unusual phenomenon. On the contrary, those crowds of pits indicate that this is one of the Creator’s normal ways of circulating whatever cells need from one to another, from the environment to the cell’s interior metabolism4, or out of it to the environment, by exocytosis.

This new knowledge enables agriculture and horticulture to dispense, forever, with the theories of ion absorption. Long ago M. Dikkers told us that the plant deals with molecules, not ions.

It seems, however, that agricultural academia has either not yet caught up with the new research data, or minimizes it, or simply cannot bear to acknowledge that the monstrous pile of data accumulated throughout the world’s agricultural efforts can be wrong. One author, aware of endocytosis, nevertheless said it must be simply an adjunct to the usual ion absorption theory!

We are therefore the first to have introduced to agriculture the information and concerning the actual facts of how plants absorb through coated pits, distribute by smooth vesicles and exude via smooth vesicles, and the repercussions this implies for husbandry. It totally reverses dependence on the worthless Cation Exchange Capacity (CEC) tests, to which even organic growers still desperately cling.

We firmly believe that this discovery is the second great find of this century, second to only the disclosure/explanation of the DNA/RNA spiral, as it affects worldwide agricultural practice.

It seems that academia can afford to admit a previous error, if such does not impinge on financial benefits. In 1983 University of California researchers in San Francisco acknowledged that, although it had always been thought that a cell nucleus formed by highly complicated processes, it actually could form “spontaneously around any DNA in the cell. regardless of source, independently of genes”.

Such a nucleus had a membrane “identical to normal nuclear membrane…double layer of fat molecules pierced by many pores through which large molecules are transported”.

When confronted with his own microscopic view proving that granules can enter cells, Christopher Somerville of Michigan State University, expressed surprise. He looked at cells of an Arabidopsis thaliana hybrid, into which a plastic. PHB (polyhydroxybutyrate), made naturally by a bacterium, had been engineered. Small amounts of the plastic were made by the hybrid, in leaves, stems, roots. That the plastic occurred as particles, not ions, was undeniable, because the stained particles showed up as red dots. The dots would have had to be particles, as microscopes today are not yet able to show individual molecules (or ions!) sited in cells.

“The researchers expected to find PHB in only the cytoplasm of the plant cells, but it appears in the nucleus and vacuoles as well. That’s mysterious to us because these compartments are surrounded by membranes and it appears that the granules may be able to cross through”.5 Two strange aspects appear here: that there should be any doubt that the granules entered the cell, and that it should be surprising that they “crossed” the membranes of the cell organelles, when they must have first “crossed” the cell plasma membrane. The idea of ion entrance is implicit in the word “cross”, a concept the academic mind apparently finds almost impossible to forget; all relevant theories are based on it.

Obviously, the granules entered by endocytosis.

Much is known about this process in animal and human cells, but very little about it in plants, since there are only a handful of researchers around the world, who are working on it. Only three of them made it possible for us to show you electron micrographs depicting the stages in progress of molecules going into cells.

Plant cells differ from all others in having a cellulose wall, giving a plant rigidity; it is made of a meshwork of fibrils. It is apparently not difficult for items to pass through the cell wall, a mere tangle of microfibrils of cellulose, and there has not been any mass of data to prove or disprove this.

Inside this cellulose-mesh wall is a membrane. All living cells are surrounded by such a membrane, called in plants the cell’s plasma membrane.

No one seems to think a molecule has trouble getting through the cellulose mesh; it is confrontation with the membrane that was thought to pose all the problems. It is passage through this that has prompted so many scientists to devise explanatory theories.

In spite of all the theories, no one has ever seen the ions (such as K+), cited in soil tests, go through the membrane. Now we can track the progress of molecule masses by means of electron microscope pictures.

1 Inst, für Biochemie des Bodens der Forschungsanstalt für Landwirtschaft, Braunschweig, Germany.

2 Faculty of Agriculture, The University of Tokyo, Tokyo, Japan.

3 N. M. Stark “Mycorrhizae and Nutrient Cycling in the Tropics” in Mycorrhizae, Proceedings of the first North American Conference on Mycorrhizae, April 1969, ed. Edward Hacskaylo. Misc. Pubn 1198, USDA Forest Service, 1971.

4 Another very clever system is that of plasmodesmata, openings in contiguous cell walls, through which protoplasm (cytoplasm) is continuous from cell to cell, so that materials can move through these special, narrow passages.

5 BioOptions Vol 3 (3) pg. 2

1. Rateaver, B. & Rateaver, G. Organic Method Primer Update: A Practical Explanation : the how and why for the Beginner and the Experience. (The Rateavers, 1993). Page 21

Treat the patient, not the lab test

We all know friends or have heard the stories of people who are not well, and visit a doctor, only to be told “Sorry, there is nothing wrong with you.”

A quote from Arden Andersen I have really appreciated is “treat the patient, and not the lab test.”

We need to do the same for our crops. when a crop is susceptible to disease or insects, and the lab reports seem to be perfect, the lab reports are obviously not reflecting reality well.

In these cases, you treat the crop, and not the lab reports. This is particularly a problem when relying on soil analysis. To such a degree that I can safely say there is no correlation between nutrients reported on most soil reports and actual crop absorption.

Treat the crop, not the lab report.

2020-03-16T14:04:12-05:00February 19th, 2020|Tags: , , |

The Agronomy of the future

Will not be based on chemistry but on biophysics and biology.

In the future, soil analysis will not be looking only at mineral balance and nutrient levels, but at the levels of amino acids, peptides, enzymes, carbohydrates, and other compounds that plant roots can absorb from the microbial community.

Agronomists will look at soil paramagnetism, redox, and electrical conductivity to evaluate a soil’s capacity to deliver to crop yields and quality.

Crop scouts will measure plant leaf redox and electrical activity to determine disease and insect susceptibility, and determine what treatments to apply to prevent possible infections.

The emerging knowledge of this space that is becoming more widely known is extremely exciting.

I posted a few weeks ago about Olivier Husson’s work on redox. His work is much broader and deeper than can be described in the referenced papers. He has been kind enough to appear on the podcast and to share his work in-depth in a six-hour-long webinar that we made available as a free online course on the academy that you can find here.

This will be the agronomy of the future. Enjoy.

 

2020-05-05T08:58:03-05:00February 12th, 2020|Tags: , , , , , |

The only thing that can not be overdone

Is balance. 

In regenerative and sustainable ecosystems anything can be applied to excess. 

Water can be excessive. So can oxygen. Or CO2. Or calcium, seaweed, biochar, humic acid, rock powder, liquid fish, crab shell, limestone, gypsum, manure, fertilizer, pesticides, and anything else you might name. 

You may have heard someone make a comment to the effect of “You can never apply too much of…(insert product here). 

You can be certain someone somewhere has done exactly that and suffered the consequences. Because there are always consequences of excesses. They are usually significantly worse and more difficult to deal with than deficiencies. 

2020-03-16T14:02:55-05:00February 11th, 2020|Tags: , , , |

The best Regenerative Agriculture YouTube channels for professional growers

In the last few years, YouTube has become a wealth of knowledge and information sharing for the regenerative agriculture community. So much, that it is easy to miss some of the great stuff.

I personally prefer to read rather than listen, since I can absorb information faster, so I asked you to recommend the channels you enjoy most, and added some additional. The emphasis of this list is that the information is focused on commercial growers who derive their income from farming. There are lots of great channels for homesteaders and gardeners, but that is not who this list is for.

If there is a channel you believe belongs on the list, please let me know!

These are in no particular order, and all worth scanning to see if they are of personal interest to you.

Menoken Farms
Jason Mauck
Loran Steinlage
Mike Omeg
Living Web Farm</a
Greg Judy
Ernst Götsch (Portuguese)
Bionutrient Food Association
NoTill on the Plains
Organic Grain Resources
National Organic Training
Sustainable Food Trust
Landcare Australia
Savory Institute
Grassfed Exchange
Green Cover Seed
Quivira Coalition
The Wallace Center
Ranching for Profit
SARE Outreach
Cover Crop Kings
Regeneration Canada
Groundswell Agriculture
Richard Perkins
NeverSink Farm
No-Till Growers (vegetables)
NOFA MASS
Diego Footer (permaculture)
No Till Farmer
Geoff Lawton (permaculture)
Not on Youtube, but worth looking at
CSU Chico

And of course, our channel at Advancing Eco Agriculture, where we post both the webinars and the podcast interviews.

Enjoy, and let me know who should be added to the list!

2020-03-20T03:30:27-05:00January 28th, 2020|Tags: , , |

Healthy plants can resist insects, including grasshoppers

Unhealthy plants transmit a variety of smells and EM signals that insects hone in on. Healthy plants don’t transmit these attractants, and they actively produce resistance compounds. Here are a few paragraphs from the podcast interview with Tom Dykstra:

Generally speaking, ethanol is a universal odorant that advertises itself as being unhealthy. So a lot of the plants will release not just ethanol, but also various alcohol components. Not all alcohols, but many alcohols advertise a plant as being unhealthy; it’s a hallmark of fermentation. Fermentation produces the alcohol.

And so when a plant is degrading and it’s in trouble and it’s fermenting, even in a small way—even in an imperceptible way—it will advertise itself. If these odorants are being released, they will be picked up by insects. It will change how the plants are perceived. You can take satellite images of two crop plants and they look different on various images. It can be a visible image. It can be an infrared image. They both may be corn. They both may be soybeans. They both may be anything you could think of, but they will not have the same look under an infrared camera or under a visible camera.

This is something which is very profound in grasshoppers. You don’t find them so much in the United States, but on other continents, locust swarms are a problem. These locust swarms are not just millions of individuals, but billions—sometimes trillions—of insects. They descend upon a very particular crop and take it all the way down to the roots and then pick up and fly away. And they will leave a farmer’s field right next to that exempt. These are the remarkable things that you realize when you see stuff like this— the grasshoppers made a decision. They made a decision to eat one plant over another. Why? Why didn’t they just come down and eat everything? We’ve always been told that grasshoppers will eat anything, and yet there is direct proof in some of the images that I have seen and testimonies of others that, no—they actually are very selective.

Now, I should tell you that grasshoppers are less selective than other insects. Some insects will disappear by a Brix of eight. Other insects will continue to chew on your plants right up through ten, eleven, or twelve Brix. But once they get to about twelve, they will lose interest. And the grasshoppers are among them. You can find the grasshoppers among slightly healthier plants for that reason, but you’re going to find that with the aphids, the leafhoppers, some of the other hemiptera insects, once the plant gets to eight, they lose interest in the plant. You just won’t find hemiptera insects on a plant above eight Brix. And those are the ones that have the beak that they stick into the phloem tissue and take a sip from the sugar water that is flowing around the phloem tissue.

So every insect has its own cutoff. You really have a lot of insects fall off by the time you get to eight. And as I mentioned at the beginning of this, most of the crops are between four and eight. So a lot of plants are really susceptible to every single insect that is out there. But if you can get above eight, you pretty much can take care of your aphids and your leafhoppers and psyllids. The Asian citrus psyllid is down here in Florida, and other psyllids, because it’s very rare to find a citrus tree that’s above eight. We’ve tested a lot of them.

2020-03-16T13:57:31-05:00January 22nd, 2020|Tags: , , |

Crop Nutrition for Public Health

Regenerative agriculture should be an agricultural paradigm that is intent on regenerating public health to the same degree as regenerating soil health. After all, every farmer knows that the health and performance of livestock is directly correlated to the quality of their nutrition. The same is true of people as well.

Public health is in significant part a responsibility of agriculture, whether we choose to accept it or not. 

In the June 1936 issue of Cosmopolitan, Rex Beach wrote an article on the research of Dr. Charles Northern, who extensively studied the connection between soil health and human health. The article was then submitted into the Congressional Record of the 74th Congress in the Senate.

Here are some highlighted excerpts, you can find the entire article below. We have made remarkably little progress in following up on the described research in the decades since. Are you aware of any more recent research on this topic? I would like to find more.

~

You’d think, wouldn’t you, that a carrot is a carrot – that one is about as good as another as far as nourishment is concerned? But it isn’t; one carrot may look and taste like another and yet be lacking in the particular mineral element which our system requires and which carrots are supposed to contain.

It is bad news to learn from our leading authorities that 99 percent of the American people are deficient in these minerals and that a marked deficiency in any one of the more important minerals actually results in disease.

The truth is that our foods vary enormously in value, and some of them aren’t worth eating, as food.

Some of our lands, even in a virgin state, never were well balanced in mineral content, and unhappily for us, we have been systematically robbing the poor soils and the good soils alike of the very substances most necessary to health, growth, long life, and resistance to disease. Up to the time I began experimenting, almost nothing had been done to make good the theft.

A cageful of normal rats will live in amity. Restrict their calcium, and they will become irritable and draw apart from one another. Then they will begin to fight. Restore their calcium balance and they will grow more friendly; in time they will begin to sleep in a pile as before.

He showed that the textbooks are not dependable because many of the analyses in them were made many years, ago, perhaps from products raised in virgin soils, whereas our soils have been constantly depleted.

Recently the Southern Medical Association, realizing the hopelessness of trying to remedy nutritional deficiencies without positive factors to work with, recommended a careful study to determine the real mineral content of foodstuffs and the variations due to soil depletion in different localities. These progressive medical men are awake to the importance of prevention.

Dr. Northen went even further and proved that crops grown in a properly mineralized soil were bigger and better; that seeds germinated quicker, grew more rapidly and made larger plants; that trees were healthier and put on more fruit of better quality.

“A healthy plant, however, grown in soil properly balanced, can and will resist most insect pests. That very characteristic makes it a better food product. You have tuberculosis and pneumonia germs in your system but you’re strong enough to throw them off. Similarly, a really healthy plant will pretty nearly take care of itself in the battle against insects and blights- and will also give the human system what it requires.”

For instance, in an orange grove infested with scale, when he restored the mineral balance to part of the soil, the trees growing in that part became clean while the rest remained diseased. By the same means he had grown healthy rosebushes between rows that were riddled by insects. 

He had grown tomato and cucumber plants, both healthy and diseased, where the vines intertwined. The bugs ate up the diseased and refused to touch the healthy plants! He showed me interesting analyses of citrus fruit, the chemistry and the food value of which accurately reflected the soil treatment the trees had received.

“Soils seriously deficient in minerals cannot produce plant life competent to maintain our needs, and with the continuous cropping and shipping away of those concentrates, the condition becomes worse.” 

‘One sure way to end the American people’s susceptibility to infection is to supply through food a balanced ration of iron, copper, and other metals. An organism supplied with a diet adequate to, or preferably in excess of, all mineral requirements may so utilize these elements as to produce immunity from infection quite beyond anything we are able to produce artificially by our present method of immunization. You can’t make up the deficiency by using patent medicine.’

“There was a time when medical therapy had no standards because the therapeutic elements in drugs had not been definitely determined on a chemical basis. Pharmaceutical houses have changed all that. Food chemistry, on the other hand, has depended almost entirely upon governmental agencies for its research, and in our real knowledge of values, we are about where medicine was a century ago.”

“Disease preys most surely and most viciously on the undernourished and unfit plants, animals, and human beings alike, and when the importance of these obscure mineral elements is fully realized the chemistry of life will have to be rewritten. No man knows his mental or bodily capacity, how well he can feel or how long he can live, for we are all cripples and weaklings. It is a disgrace to science. Happily, that chemistry is being rewritten and we’re on our way to better health by returning to the soil the things we have stolen from it.”

“It is simpler to cure sick soils than sick people – which shall we choose?” 

Rex Beach, “Modern Miracle Men”, Document No. 264 in  Senate Documents, 74th Congress, 2d Session, vol 18-48, United States Government Printing Office, Washington, 1936, p. 1-9.

 

2020-03-16T13:56:05-05:00January 20th, 2020|Tags: , |

Impacts of glyphosate residue on seed germination

Some new research1 describes the impact of pre-emerge glyphosate applications on seedling development and yields, and the impact of prior year appplications. The conclusion: you certainly want to avoid any application until well after seedling emergence, and prior year applications are probably impacting your current yields. It seems we need to begin using alternatives immediately.

The article itself is a great read, here are a few excerpted highlights:

  • The seed germination of faba bean, oat and turnip rape, and sprouting of potato tubers was delayed in the greenhouse experiments in soils treated with GBH (glyphosate based herbicide) or with pure glyphosate.
  • The total shoot biomass of faba bean was 28%, oat 29% and turnip rape 58% higher in control compared to GBH soils four weeks after sowing.
  • Grazing by barnacle geese was three times higher in oats growing in the GBH soils compared to control oats in the field. 
  • Our results indicate that the use of GBH, as well as surfactants and other ingredients of commercial herbicide products, have different effects on the seedling establishment of seed- and vegetative-propagated crops.
  • In all the studied seed-propagated crops, germination was faster, and in turnip rape and oats the total germination percentage was higher in the C soils compared to the pure G- or GBH (Roundup)-treated soils.
  • seed-propagated crops with limited endosperms as an energy source are likely to be exposed to GBH residues in soils following water imbibition at the beginning of the seed germination.
  • Our results suggest that the use of GPH may have unintended and undesirable consequences for farmers. The speed of germination and early growth may be crucial for the plants, depending on the abiotic and biotic environmental factors. Especially in spring, earlier individuals may benefit from moisture and a lack of competition. Thus, delayed germination and weakened growth of seed-propagated crops in GBH-contaminated soils may invalidate the intended crop protection if targeted weeds get a head start in early spring.
  • The use of GBH may increase the yield loss caused by flea beetles and further challenge spring-planted oilseed rape and turnip rape cultivation
  • Glyphosate can enhance the attractiveness of plants to vertebrate herbivores. In the field experiment, the oat plants growing in GBH-treated experimental plots experienced heavy barnacle geese grazing while the adjacent plants in C plots were only mildly grazed. 
  • Glyphosate is known to inhibit the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the shikimate acid pathway, thereby interfering with the production of tryptophan, phenylalanine or tyrosine, which are precursors of proteins and other molecules, including growth promoters (e.g., indoleacetic acid, IAA) or secondary compounds with known importance for plant defense against herbivores (e.g., tannins, anthocyanins, flavonoids, and lignin.
  • Overall, the effect of pure glyphosate was weaker compared to that of the commercial formulation (Roundup Gold) containing the same amount of glyphosate. This supports other studies suggesting that other ingredients in GBH, such as surfactants, solvents, and preservatives, could also cause adverse effects on non-target organisms.
  • Our results clearly demonstrate that the use of GBH has detectable effects on crop plant germination and growth, and their quality to herbivores, even though we used field-realistic concentrations of GBH and the experimental plants were introduced into the soil after a two-week withholding period.
  • In contrast to seed-propagated crops, GBH treatment boosted the growth of vegetatively propagated potatoes, and glyphosate appeared to accumulate in the potato tubers. This leads to the critical question of whether the residues in potatoes have consequences for the subsequent year’s yield.
  • These results emphasize the importance of a more comprehensive understanding of the effects of GBH on the productivity of crop plants and their chemical ecology, affecting their pest and pathogen resistance and thus the need for crop protection.
  1. Helander, M., Pauna, A., Saikkonen, K. & Saloniemi, I. Glyphosate residues in soil affect crop plant germination and growth. Sci. Rep. 9, 19653 (2019).

 

2020-03-16T13:54:09-05:00January 14th, 2020|Tags: , , , , |

Disease suppression of wheat take-all disease

The presence of soil-borne disease infection is not correlated to the presence of an infectious organism, but to the absence of suppressive microbes.

Here is an example from Paul Syltie1 on wheat take-all disease: 

It is well documented that the fungus responsible for the take all of wheat Gaeumannomyces graminis var. tritici is attacked by soil bacteria, in particular by the bacteria in what are called take-all suppressive soils. These soils are unique in that the severity of the disease becomes progressively less as the cropping season continues. In some cases the disease may not even express itself whatsoever despite being present.

It is concluded by soil microbiologists that most soils express some degree of natural pathogen suppression. This occurs generally in soils by the mass of beneficial organisms overwhelming the pathogens at a critical time in their life cycle, robbing critical nutrients from them. Specific suppression occurs when select species or groups of beneficial organisms antagonize the pathogen at some stage of its life cycle.

Take-all in wheat or barley becomes less and less of a problem if the crop is grown in consecutive years. Both fungi and bacteria, such as friendly saprophytic Fusarium species, reduce pathogen numbers by competing for food supplies, and at the same time specific antagonistic microbes like fluorescent pseudomonads attack the G. graminis. The pseudomonads are especially effective when ammonium rather than nitrate fertilizer is used, resulting in a lower rhizosphere pH. This suppression likely occurs mostly in the rhizosphere, but also throughout the soil mass.

1. Syltie, P. W. How Soils Work. (Xulon Press, 2002). Page 111

2020-03-16T13:50:36-05:00January 6th, 2020|Tags: , , , , , |

Foliars as a tool of soil regeneration

Without the contribution of plants, ‘soil’ is only decomposed rock particles.  

Plants contribute sugars, organic matter, carbon, the energy that sustains microbial populations. 

Plants, through photosynthesis, are the only way we have of bringing new energy into the system.

The photosynthetic engine of most crops is only running at 15%-20% efficiency. (Charles Tsai, et al.) It makes sense to increase the efficiency of this engine as much as we are able.

The first priority of a successful foliar application is to increase photosynthetic efficiency. A foliar application that only addresses nutrient deficiencies and does not increase photosynthesis will not be nearly as effective as a foliar which does both. In fact, a foliar which does not increase photosynthesis can facilitate more efficient extraction of soil nutrients and increase soil degradation. Foliar design matters.

The nutrients which need to be present in adequate supply to increase photosynthesis are nitrogen, manganese, iron, magnesium and phosphorus. Obviously, many others are also important, but these are key.

We can use foliars as a tool for soil regeneration when we use them to increase photosynthetic efficiency and transfer a larger portion of plant photosynthates to the roots to feed soil biology. 

When a well designed foliar is applied, the spike in photosynthesis can be observed in sap sugar content and dissolved solids, or brix. (Measured actual sugars on a plant sap analysis is best by far. Brix can be highly variable because of environmental conditions.)

After a successful foliar application, the photosynthetic rate will gradually drop back down, but not quite down to the previous baseline. With each successive application spike, and return to baseline, the baseline level increases. When photosynthetic efficiency baseline improves to a high enough plateau plants contribute more carbon energy to the soil than they withdraw mineral energy and the entire ecosystem becomes self-sustaining.

The drop back to the new baseline can occur quickly or slowly, depending on the level of ecosystem health. In a compromised and degraded ecosystem, the spike may last for as little as 3-5 days before it drops back down. In a healthy soil, with good biology, the elevated spike may last for as long as 5-6 weeks or even longer. 

The healthier soils and plants become the fewer foliars are needed until the point is reached where they are completely unnecessary to sustain a level of health where plants are completely resistant to diseases and insects.

While on the pathway to this point, we can still use the photosynthetic efficiency spikes to produce interesting and valuable effects. If we have the presence of larval or sucking insects,  a spike in photosynthesis is often successful in giving them a dose of sugar they can’t tolerate.

A slide from an academy presentation. Academy.regen.ag

2020-03-16T13:49:53-05:00January 4th, 2020|Tags: , , , |

Go to Top